Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glass Fabrication
2.2. Mechanical Properties Calculations
2.3. Radiation Shielding Calculations Using Monte Carlo Simulation
3. Result and Discussion
3.1. Material Features Study
3.2. Radiation Attenuation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akkurt, I.; Basyigit, C.; Kilincarslan, S.; Mavi, B. The shielding of γ-rays by concretes produced with barite. Prog. Nucl. Energy 2005, 46, 1–11. [Google Scholar] [CrossRef]
- Xu, S.; Bourham, M.; Rabiei, A. A novel ultra-light structure for radiation shielding. Mater. Des. 2010, 31, 2140–2146. [Google Scholar] [CrossRef] [Green Version]
- Olukotun, S.; Gbenu, S.; Ibitoye, F.; Oladejo, O.; Shittu, H.; Fasasi, M.; Balogun, F. Investigation of gamma radiation shielding capability of two clay materials. Nucl. Eng. Technol. 2018, 50, 957–962. [Google Scholar] [CrossRef]
- Harrison, C.; Weaver, S.; Bertelsen, C.; Burgett, E.; Hertel, N.; Grulke, E. Polyethylene/boron nitride composites for space radiation shielding. J. Appl. Polym. Sci. 2008, 109, 2529–2538. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Tashlykov, O.L.; Mhareb, M.; Almuqrin, A.H.; Alajerami, Y.; Sayyed, M. A new heavy-mineral doped clay brick for gamma-ray protection purposes. Appl. Radiat. Isot. 2021, 173, 109720. [Google Scholar] [CrossRef] [PubMed]
- Oto, B.; Yıldız, N.; Akdemir, F.; Kavaz, E. Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energy 2015, 85, 391–403. [Google Scholar] [CrossRef]
- Çelen, Y.Y.; Evcin, A. Synthesis and characterizations of magnetite-borogypsum for radiation shielding. Emerg. Mater. Res. 2020, 9, 770–775. [Google Scholar] [CrossRef]
- Sayyed, M.; Abdalsalam, A.H.; Taki, M.M.; Mhareb, M.; Alim, B.; Baltakesmez, A.; Şakar, E. MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications. Radiat. Phys. Chem. 2020, 172, 108852. [Google Scholar] [CrossRef]
- Alajerami, Y.S.M.; Morsy, M.A.; Mhareb, M.H.A.; Sayyed, M.I.; Imheidat, M.A.; Hamad, M.K.; Karim, M.K.A. Structural, optical, and radiation shielding features for a series of borate glassy system modified by molybdenum oxide. Eur. Phys. J. Plus 2021, 136, 1–18. [Google Scholar] [CrossRef]
- Mhareb, M.; Alqahtani, M.; Alshahri, F.; Alajerami, Y.; Saleh, N.; Alonizan, N.; Sayyed, M.; Ashiq, M.; Ghrib, T.; Al-Dhafar, S.I.; et al. The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non-Cryst. Solids 2020, 541, 120090. [Google Scholar] [CrossRef]
- Naseer, K.; Marimuthu, K.; Al-Buriahi, M.; Alalawi, A.; Tekin, H. Influence of Bi2O3 concentration on barium-telluro-borate glasses: Physical, structural and radiation-shielding properties. Ceram. Int. 2020, 47, 329–340. [Google Scholar] [CrossRef]
- Libeesh, N.; Naseer, K.; Arivazhagan, S.; El-Rehim, A.A.; Mahmoud, K.; Sayyed, M.; Khandaker, M.U. Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping. Radiat. Phys. Chem. 2021, 189, 109777. [Google Scholar] [CrossRef]
- Mhareb, M.; Alsharhan, R.; Sayyed, M.; Alajerami, Y.; Alqahtani, M.; Alayed, T.; Almurayshid, M. The impact of TeO2 on physical, structural, optical and radiation shielding features for borate glass samples. Optik 2021, 247, 167924. [Google Scholar] [CrossRef]
- Dwaikat, N.; Sayyed, M.; Mhareb, M.; Dong, M.; Alajerami, Y.; Alrammah, I.; Khalid, A.; Ashiq, M. Durability, optical and radiation shielding properties for new series of boro-tellurite glass. Optik 2021, 245, 167667. [Google Scholar] [CrossRef]
- Naseer, K.A.; Karthikeyan, P.; Arunkumar, S.; Suthanthirakumar, P.; Marimuthu, K. Enhanced luminescence properties of Er3+/Yb3+ doped zinc tellurofluoroborate glasses for 1.5 µm optical amplification. AIP Conf. Proc. 2020, 2265, 030237. [Google Scholar] [CrossRef]
- Naseer, K.; Arunkumar, S.; Marimuthu, K. The impact of Er3+ ions on the spectroscopic scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53 μm amplification. J. Non-Cryst. Solids 2019, 520, 119463. [Google Scholar] [CrossRef]
- Naseer, K.; Marimuthu, K. The impact of Er/Yb co-doping on the spectroscopic performance of bismuth borophosphate glasses for photonic applications. Vacuum 2020, 183, 109788. [Google Scholar] [CrossRef]
- Chen, Q.; Naseer, K.A.; Marimuthu, K.; Kumar, P.S.; Miao, B.; Mahmoud, K.A.; Sayyed, M.I. Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems. J. Aust. Ceram. Soc. 2021, 57, 275–286. [Google Scholar] [CrossRef]
- Suthanthirakumar, P.; Arunkumar, S.; Marimuthu, K. Investigations on the spectroscopic properties and local structure of Eu 3+ ions in zinc telluro-fluoroborate glasses for red laser applications. J. Alloy. Compd. 2018, 760, 42–53. [Google Scholar] [CrossRef]
- Mhareb, M.; Alajerami, Y.; Sayyed, M.; Dwaikat, N.; Alqahtani, M.; Alshahri, F.; Saleh, N.; Alonizan, N.; Ghrib, T.; Al-Dhafar, S.I. Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. J. Non-Cryst. Solids 2020, 550, 120360. [Google Scholar] [CrossRef]
- Krause, S.; Pfau, C.; Dyrba, M.; Miclea, P.-T.; Schweizer, S. On the role of the network modifier PbO in Sm3+-doped borate glasses. J. Lumin. 2014, 151, 29–33. [Google Scholar] [CrossRef]
- Hamad, M.K.; Mhareb, M.H.A.; Alajerami, Y.S.; Sayyed, M.I.; Saleh, G.; Maswadeh, Y.; Ziq, K. Radiation shielding properties of Nd0. 6Sr0. 4Mn1—yNiyO3 substitute with different concentrations of nickle. Radiat. Phys. Chem. 2020, 174, 108920. [Google Scholar] [CrossRef]
- Hamad, R.M.; Mhareb, M.H.A.; Alajerami, Y.S.; Sayyed, M.I.; Saleh, G.; Hamad, M.K.; Ziq, K. A comprehensive ionizing radiation shielding study of FexSe0. 5Te0. 5 alloys with various iron concentrations. J. Alloys Compd. 2021, 858, 157636. [Google Scholar] [CrossRef]
- Makishima, A.; MacKenzie, J. Direct calculation of Young’s moidulus of glass. J. Non-Cryst. Solids 1973, 12, 35–45. [Google Scholar] [CrossRef]
- Makishima, A.; MacKenzie, J.D. Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J. Non-Cryst. Solids 1975, 17, 147–157. [Google Scholar] [CrossRef]
- El-Moneim, A.A. Effect of ZnF2 and WO3 on elastic properties of oxyfluoride tellurite ZnF2–WO3–TeO2 glasses: Theoretical analysis. Chin. J. Phys. 2020, 65, 412–423. [Google Scholar] [CrossRef]
- X-5 Monte Carlo Team. MCNP—A General Monte Carlo N-Particle Transport Code; Version 5; La-Ur-03-1987, II; MCNP: Punjab, India, 2003. [Google Scholar]
- Naseer, K.A.; Marimuthu, K.; Mahmoud, K.A.; Sayyed, M.I. Impact of Bi2O3 modifier concentration on barium–zincborate glasses: Physical, structural, elastic, and radiation-shielding properties. Eur. Phys. J. Plus 2021, 136, 116. [Google Scholar] [CrossRef]
- Teresa, P.E.; Naseer, K.; Marimuthu, K.; Alavian, H.; Sayyed, M. Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses. Radiat. Phys. Chem. 2021, 189, 109741. [Google Scholar] [CrossRef]
- Kurtuluş, R.; Kavas, T.; Agar, O.; Turhan, M.; Kaçal, M.; Dursun, I.; Akman, F. Study on recycled Er-incorporated waste CRT glasses for photon and neutron shielding. Ceram. Int. 2021, 47, 26335–26349. [Google Scholar] [CrossRef]
- Saddeek, Y.B.; El Latif, L. Effect of TeO2 on the elastic moduli of sodium borate glasses. Phys. B Condens. Matter 2004, 348, 475–484. [Google Scholar] [CrossRef]
- Hager, I. Effect of Er2O3 and ErF3 on the structural and elastic properties of sodium oxyfluoroborate glasses. J. Alloy. Compd. 2012, 539, 256–263. [Google Scholar] [CrossRef]
- Gerward, L.; Guilbert, N.; Jensen, K.B.; Levring, H. X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 2001, 60, 23–24. [Google Scholar] [CrossRef]
- Yasmin, S.; Barua, B.S.; Khandaker, M.U.; Rashid, M.A.; Bradley, D.A.; Olatunji, M.A.; Kamal, M. Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 2018, 9, 541–549. [Google Scholar] [CrossRef]
- Yasmin, S.; Rozaila, Z.S.; Khandaker, M.U.; Barua, B.S.; Chowdhury, F.U.Z.; Rashid, M.A.; Bradley, D.A. The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Eff. Defects Solids 2018, 173, 657–672. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Yang, H.; Li, Z. Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 2017, 141, 239–244. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 2016, 318, 751–757. [Google Scholar] [CrossRef] [PubMed]
Sample Codes | Composition Ratios (mol%) | |||||||
---|---|---|---|---|---|---|---|---|
SrO | B2O3 | TeO2 | TiO2 | ZnO | BaO | PbO | Density (g/cm3) | |
SBT-Ti | 10 | 35 | 35 | 20 | 0 | 0 | 0 | 4.0591 |
SBT-Zn | 10 | 35 | 35 | 0 | 20 | 0 | 0 | 4.2968 |
SBT-Ba | 10 | 35 | 35 | 0 | 0 | 20 | 0 | 4.7395 |
SBT-Pb | 10 | 35 | 35 | 0 | 0 | 0 | 20 | 5.2657 |
SBT-Ti | SBT-Zn | SBT-Ba | SBT-Pb | |
---|---|---|---|---|
MW | 106.561 | 106.864 | 121.253 | 135.228 |
Molar volume | 26.252 | 24.871 | 25.584 | 25.681 |
Vi | 16.405 | 15.065 | 15.285 | 15.825 |
Gt | 72.660 | 62.400 | 60.320 | 57.480 |
Vt | 0.625 | 0.606 | 0.597 | 0.616 |
Young | 90.810 | 75.596 | 72.077 | 70.840 |
Bulk | 68.096 | 54.949 | 51.675 | 52.384 |
Shear | 35.535 | 29.746 | 28.432 | 27.789 |
Poisson | 0.278 | 0.271 | 0.268 | 0.275 |
micro-hardness | 5.265 | 4.547 | 4.406 | 4.176 |
Longitudinal | 115.476 | 94.610 | 89.585 | 89.436 |
longitudinal velocity | 5333.739 | 4692.414 | 4347.607 | 4121.235 |
Shear velocity | 2958.797 | 2631.106 | 2449.274 | 2297.251 |
Softining temperature | 452.948 | 339.322 | 302.472 | 267.102 |
Bond fractal conductivity | 2.087 | 2.165 | 2.201 | 2.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayyed, M.I.; Hamad, M.K.; Abu Mhareb, M.H.; Naseer, K.A.; Mahmoud, K.A.; Khandaker, M.U.; Osman, H.; Elesawy, B.H. Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO). Appl. Sci. 2021, 11, 10904. https://doi.org/10.3390/app112210904
Sayyed MI, Hamad MK, Abu Mhareb MH, Naseer KA, Mahmoud KA, Khandaker MU, Osman H, Elesawy BH. Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO). Applied Sciences. 2021; 11(22):10904. https://doi.org/10.3390/app112210904
Chicago/Turabian StyleSayyed, M. I., M. Kh. Hamad, Mohammad Hasan Abu Mhareb, K. A. Naseer, K. A. Mahmoud, Mayeen Uddin Khandaker, Hamid Osman, and Basem H. Elesawy. 2021. "Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO)" Applied Sciences 11, no. 22: 10904. https://doi.org/10.3390/app112210904
APA StyleSayyed, M. I., Hamad, M. K., Abu Mhareb, M. H., Naseer, K. A., Mahmoud, K. A., Khandaker, M. U., Osman, H., & Elesawy, B. H. (2021). Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO). Applied Sciences, 11(22), 10904. https://doi.org/10.3390/app112210904