Model Study on the Combination of Operating Parameters of Corn Kernel Harvesters
Abstract
:1. Introduction
2. Analysis of the Principles
2.1. Working Principle of a Harvesting Machine Threshing Cylinder
2.2. Harvester Engine Working Condition Analysis
3. Materials and Methods
3.1. Experimental Method
3.1.1. Experimental Field
3.1.2. Corn Yield Determination
3.2. Indicators of Experiment Factors and Operational Parameters
3.3. Experimental Scheme Design Based on Ternary Quadratic Regression of the Orthogonal Center-of-Rotation Combination Optimization Test
4. Results and Discussion
4.1. Experimental Results of a Ternary Quadratic Regressionof the Orthogonal Center of Rotation Combination Optimisation Test
4.2. Harvester Engine Speed in Relation to Threshing Cylinder Operating Parameters
4.3. Optimization of Operating Parameters
4.3.1. Operating Quality Contour Plots
4.3.2. Regression Analysis
4.3.3. Operating Parameter Optimization
4.4. Experimental Validation of Operating Parameters
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, J.; Meng, J.H.; Quackenbush, L.J. Use of remote sensing to predict the optimal harvest date of corn. Field Crop. Res. 2019, 236, 1–13. [Google Scholar] [CrossRef]
- Shao, Y.E.; Dai, J.T. Integrated Feature Selection of ARIMA with Computational Intelligence Approaches for Food Crop Price Prediction. Complexity 2018, 2018, 1910520. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Shaver, R.D.; Luck, B.D. Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Li, G.; Yuan, M. Extraction Method of Maize Planting Information Based on UAV Remote Sensing Techonology. Trans. ASABE 2017, 48, 139–147. [Google Scholar]
- Zhang, L.; Chen, Z. Spatio-temporal Feature of Maize Production Efficiency in Main Producing Provinces of China. Trans. ASABE 2018, 49, 183–193. [Google Scholar]
- Singh, V.; Stone, J.; Robert, J.P.; Vani, S.N. Industrial Biotechnology Shaping Corn Biorefineries of the Future. Cereal Food World 2019, 64. [Google Scholar] [CrossRef]
- Eroglu, M.C.; Ogut, H.; Turker, U. Effects of some operational parameters in combine harvesters on grain loss and comparison between sensor and conventionalmeasurementmethod. Energy Educ. Sci. Technol. 2011, 28, 497–504. [Google Scholar]
- Liang, X.; Chen, Z.; Zhang, X.; Wei, L.; Li, W.; Che, Y. Design and Experiment of On-line Monitoring System for Feed Quantity of Combine Harvester. Trans. ASABE 2013, 44, 1–6. [Google Scholar]
- Liang, Z.; Li, Y.; Xu, L. Grain Sieve Loss Fuzzy Control System in Rice Combine Harvesters. Appl. Sci. 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Maldaner, L.F.; de Paula Corrêdo, L.; Canata, T.F.; Molin, J.P. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Comput. Electron. Agric. 2021, 181, 105945. [Google Scholar] [CrossRef]
- Oksanen, T.; Linkolehto, R.; Seilonen, I. Adapting an industrial automation protocol to remote monitoring of mobile agricultural machinery: A combine harvester with IoT. IFAC-Papers OnLine 2016, 49, 127–131. [Google Scholar] [CrossRef]
- Huang, Z.; Xue, J.; Ming, B.; Wang, K.; Xie, R.; Hou, P.; Li, S. Analysis of factors affecting the impurity rate of mechanically-harvested maize grain in China. Int. J. Agric. Biol. Eng. 2020, 13, 17–22. [Google Scholar] [CrossRef]
- Baciewicz, F.A. Failure to Harvest Lymph Nodes. Ann. Thorac. Surg. 2019, 107, 1287. [Google Scholar] [CrossRef]
- Jung, H.; Eshghi, A.T.; Lee, S. Structural Failure Detection Using Wireless Transmission Rate from Piezoelectric Energy Harvesters. IEEE-ASME Trans. Mech. 2020, 1, 1004. [Google Scholar] [CrossRef]
- Wattanajitsiri, V.; Kanchana, R.; Triwanapong, S.; Kimapong, K. Identifying preventive maintenance guideline for a combine harvester with application of failure mode and effect analysis technique. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 134, pp. 187–194. [Google Scholar]
- Monhollen, N.S.; Shinners, K.J.; Friede, J.C.; Rocha, E.M.; Luck, B.D. In-field machine vision system for identifying corn kernel losses. Comput. Electron. Agric. 2020, 174, 105496. [Google Scholar] [CrossRef]
- Chen, J.; Gu, Y.; Lian, Y.; Han, M. Online recognition method of impurities and broken paddy grains based on machine vision. Trans. ASABE 2018, 34, 187–194. [Google Scholar]
- Jobbágy, J.; Dočkalík, M.; Krištof, K.; Burg, P. Mechanized grape harvester efficiency. Appl. Sci. 2021, 11, 4621. [Google Scholar] [CrossRef]
- Zhang, Z.; Chi, R.; Du, Y.; Xie, B.; Deng, X.; Han, K. Investigation on CAN-bus-based Corn Harvester Intelligent Control System. Trans. ASABE 2018, 49, 275–281. [Google Scholar]
- Mahirah, J.; Yamamoto, K.; Miyamoto, M.; Kondo, N.; Ogawa, Y.; Suzuki, T.; Habaragamuwaa, H.; Ahmad, U. Monitoring harvested paddy during combine harvesting using a machine vision-Double lighting system. Eng. Agric. Environ. Food 2017, 10, 140–149. [Google Scholar] [CrossRef]
- Chen, M.; Ni, Y.; Jin, C.; Xu, J.; Yuan, W. High spectral inversion of wheat impurities rate for grain combine harvester. Trans. ASABE 2019, 35, 22–29. [Google Scholar]
- Ran, J.; Wu, C. Application progress and development trend of sensor in grain combine harvester. Jiangsu Agric. Sci. 2019, 47, 23–29. [Google Scholar]
- Giri, A.M.; Ali, S.F.; Arockiarajan, A. Dynamics of symmetric and asymmetric potential well-based piezoelectric harvesters: A comprehensive review. J. Intell. Mater. Syst. Struct. 2020, 32. [Google Scholar] [CrossRef]
- Esmaeeli, R.; Aliniagerdroudbari, H.; Hashemi, S.R.; Alhadri, M.; Zakri, W.; Batur, C.; Farhad, S. Design, modeling, and analysis of a high performance piezoelectric energy harvester for intelligent tires. Int. J. Energy Res. 2019, 43, 5199–5212. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z. Design and Analysis of Grain Combine Harvester; Machinery Industry Press: Beijing, China, 2014; p. 200. [Google Scholar]
- Wang, J.; Shuai, S. Automotive Engine Fundamentals; Tsinghua University Press: Beijing, China, 2020; p. 127. [Google Scholar]
- Ren, L. Experimental Design and Optimization; Science Press: Beijing, China, 2009; pp. 71–91. [Google Scholar]
Symbols | Meaning | Symbols | Meaning |
---|---|---|---|
ω | Angular velocity (rad/s) | r | Equivalent radius (m) |
Angular acceleration (rad/s2) | J | Rotational inertia (kg∙m2) | |
We | Circulation function | N | Power (kW) |
γ | Crop grain to grass ratio | q | Feed rate (kg/s) |
f | Rubbing factor | a | Coefficients of friction |
λ | Ratio of stalk exit velocity to the circumferential velocity of threshing cylinder | b | Air resistance |
No. | Crop Mass Per Unit of Area (kg/m2) | ||
---|---|---|---|
Region 1 | 2.58 | 2.67 | 3.09 |
Region 2 | 2.58 | 3.22 | 2.01 |
Region 3 | 2.36 | 2.81 | 2.86 |
Average crop mass per unit area | 2.69 |
Code | Factors | ||
---|---|---|---|
Feed Rate: q (kg/s) | Cylinder Speed: n (r/min) | Concave Clearance (mm) | |
1.6818 | 17.15 | 420 | 40 |
1 | 14.70 | 390 | 35 |
0 | 12.25 | 360 | 30 |
−1 | 9.8 | 330 | 25 |
−1.6818 | 7.35 | 300 | 20 |
Levels | Feed Rate | Cylinder Speed | Concave Clearance | Engine Speed Variation Rate | Crushing Rate | Impurity Rate | Kernel Loss Rate | Cylinder Speed Variation Rate |
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | y1 | y2 | y3 | y4 | y5 | |
1 | 1 | 1 | 1 | 100 | 3.33 | 1.96 | 9.10 | 100 |
2 | 1 | 1 | −1 | 100 | 2.72 | 0.94 | 2.33 | 100 |
3 | 1 | −1 | 1 | 0.14 | 4.84 | 1.24 | 4.19 | 7.62 |
4 | 1 | −1 | −1 | 1.42 | 4.57 | 1.66 | 3.07 | 3.61 |
5 | −1 | 1 | 1 | 2.60 | 4.97 | 2.58 | 8.71 | 4.10 |
6 | −1 | 1 | −1 | 6.85 | 2.93 | 1.89 | 3.44 | 9.17 |
7 | −1 | −1 | 1 | 100 | 3.80 | 1.31 | 19.85 | 100 |
8 | −1 | −1 | −1 | 3.47 | 4.45 | 1.61 | 6.95 | 4.33 |
9 | −1.6818 | 0 | 0 | 0.29 | 3.76 | 2.58 | 22.15 | 4.72 |
10 | 1.6818 | 0 | 0 | 2.31 | 7.45 | 1.34 | 16.67 | 4.10 |
11 | 0 | −1.6818 | 0 | 1.48 | 4.18 | 0.86 | 5.63 | 2.42 |
12 | 0 | 1.6818 | 0 | 12.23 | 4.83 | 0.89 | 4.99 | 15.56 |
13 | 0 | 0 | −1.6818 | 23.66 | 4.16 | 0.77 | 3.35 | 22.78 |
14 | 0 | 0 | 1.6818 | 12.67 | 5.71 | 1.48 | 4.41 | 14.44 |
15 | 0 | 0 | 0 | 0.65 | 3.56 | 2.90 | 38.19 | 1.11 |
16 | 0 | 0 | 0 | 1.60 | 3.57 | 0.95 | 3.53 | 3.03 |
17 | 0 | 0 | 0 | 0.42 | 4.17 | 2.00 | 4.28 | 1.11 |
18 | 0 | 0 | 0 | 0.46 | 4.24 | 1.10 | 2.47 | 1.54 |
19 | 0 | 0 | 0 | 0.05 | 4.23 | 2.60 | 3.15 | 0.28 |
20 | 0 | 0 | 0 | 11.86 | 5.07 | 1.75 | 8.61 | 13.33 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
y1 | Regression | 18,078.18 | 9 | 2008.69 | F2 = 3.519 | 0.036 |
Remainder | 5708.35 | 10 | 570.84 | — | — | |
Lack of fit | 5602.13 | 5 | 1120.43 | F1 = 52.74 | 0.0001 | |
Pure error | 106.23 | 5 | 21.25 | — | — | |
Total | 23,786.53 | 19 | — | — | — | |
y2 | Regression | 8.22 | 9 | 0.91 | F2 = 0.74 | 0.6812 |
Remainder | 12.40 | 10 | 1.24 | — | — | |
Lack of fit | 10.86 | 5 | 2.17 | F1 = 7.00 | 0.0047 | |
Pure error | 1.55 | 5 | 0.31 | — | — | |
Total | 20.62 | 19 | — | — | — | |
y3 | Regression | 4.40 | 9 | 0.35 | F2 = 1.309 | 0.35 |
Remainder | 3.74 | 10 | — | — | — | |
Lack of fit | — | 5 | — | F1 = 0.219 | 0.95 | |
Pure error | — | 5 | — | — | — | |
Total | — | 19 | — | — | — | |
y4 | Regression | 498.31 | 9 | 55.37 | F2 = 0.528 | 0.83 |
Remainder | 1049.31 | 10 | 104.93 | — | — | |
Lack of fit | 74.40 | 5 | 14.88 | F1 = 0.076 | 0.99 | |
Pure error | 974.91 | 5 | 194.98 | — | — | |
Total | 1547.62 | 19 | — | — | — | |
y5 | Regression | 17,318 | 9 | 1924.22 | F2 = 3.473 | 0.0373 |
Remainder | 5539.78 | 10 | 553.978 | — | — | |
Lack of fit | 5417.28 | 5 | 1083.46 | F1 = 44.223 | 0.0001 | |
Pure error | 122.499 | 5 | 24.4999 | — | — | |
Total | 22,857.8 | 19 | — | — | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Xu, C.; Xin, Y.; Hou, P.; Wu, B.; Yu, H.; Zhang, J.; Zhang, Q. Model Study on the Combination of Operating Parameters of Corn Kernel Harvesters. Appl. Sci. 2021, 11, 10328. https://doi.org/10.3390/app112110328
Zhou D, Xu C, Xin Y, Hou P, Wu B, Yu H, Zhang J, Zhang Q. Model Study on the Combination of Operating Parameters of Corn Kernel Harvesters. Applied Sciences. 2021; 11(21):10328. https://doi.org/10.3390/app112110328
Chicago/Turabian StyleZhou, Deyi, Chongbin Xu, Yuelin Xin, Pengfei Hou, Baoguang Wu, Haiye Yu, Jinsong Zhang, and Qiang Zhang. 2021. "Model Study on the Combination of Operating Parameters of Corn Kernel Harvesters" Applied Sciences 11, no. 21: 10328. https://doi.org/10.3390/app112110328
APA StyleZhou, D., Xu, C., Xin, Y., Hou, P., Wu, B., Yu, H., Zhang, J., & Zhang, Q. (2021). Model Study on the Combination of Operating Parameters of Corn Kernel Harvesters. Applied Sciences, 11(21), 10328. https://doi.org/10.3390/app112110328