Nanodiamond—Carbon Black Hybrid Filler System for Demanding Applications of Natural Rubber—Butadiene Rubber Composite
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Fowler, G.D.; Zhao, M. The past. present and future of carbon black as a rubber reinforcing filler—A review. J. Clean. Prod. 2020, 247, 119115. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Sustainable mobility: The route of tires through the circular economy model. Waste Manag. 2021, 126, 309–322. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Heinrich, G. Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Comp. Sci. Technol. 2011, 71, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- Le, H.H.; Parsaker, M.; Sriharish, M.N.; Henning, S.; Menzel, M.; Wießner, S.; Das, A.; Do, Q.K.; Heinrich, G.; Radusch, H.J. Effect of rubber polarity on selective wetting of carbon nanotubes in ternary blends. Express Polym. Lett. 2015, 9, 960–971. [Google Scholar] [CrossRef]
- Kummerlöwe, C.; Vennemann, N.; Yankova, E.; Wanitschek, M.; Grös, C.; Heider, T.; Haberkorn, F.; Siebert, A. Preparation and properties of carbon nanotube composites with nitrile- and styrene-botadiene rubebrs. Polym. Eng. Sci. 2013, 53, 849–856. [Google Scholar] [CrossRef]
- Ghosh, S.; Sengupta, R.A.; Heinrich, G. High Performance Nanocomposite based on Organoclay and Blends of Different Types of SBR with BR. Kautsch. Gummi Kunstst. 2011, 1–2, 48–54. [Google Scholar]
- Cadambi, R.M.; Ghassemieh, E. Optimized Process for the Inclusion of Carbon Nanotubes in Elastomers with Improved Thermal and Mechanical Properties. J. Appl. Polym. Sci. 2012, 124, 4993–5001. [Google Scholar] [CrossRef]
- Cataldo, F. Reinforcing effect of multiwall carbon nanotubes in carbon black filled NR compounds. Rubber Fibres Plast. Int. 2009, 4, 78–83. [Google Scholar]
- Basu, D.; Das, A.; Stöckelhuber, K.W.; Wagenknecht, U.; Heinrich, G. Advances in layered double hydroxide (LDH)-based elastomer composites. Prog. Polym. Sci. 2014, 39, 594–626. [Google Scholar] [CrossRef]
- Bokobza, L. Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007, 48, 4907–4920. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.-X.; Ni, Q.-Q.; Natsuki, T. Effect of carbon nanotubes on the properties of natural rubber composites. Key Eng. Mater. 2011, 464, 660–662. [Google Scholar] [CrossRef]
- Bokobza, L. Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites. Polym. Adv. Technol. 2012, 23, 1543–1549. [Google Scholar] [CrossRef]
- De Falco, A.; Goyanes, S.; Rubiolo, H.; Mondragon, I.; Marzocca, A. Carbon nanotubes as reinforcement of styrene-butadiene rubber. Appl. Surf. Sci. 2007, 254, 262–265. [Google Scholar] [CrossRef]
- Poikelispää, M.; Das, A.; Dierkes, W.; Vuorinen, J. The effect of partial replacement of carbon black by carbon nanotubes on the properties of natural rubber/butadiene rubber compound. J. Appl. Polym. Sci. 2013, 54, 402–410. [Google Scholar] [CrossRef]
- Galimberti, M.; Cipolletti, M.; Coombs, M.; Riccò, T.; Agnelli, S.; Pandini, S. The role of nanofillers in promoting hybrid filler networking and synergism with carbon black in a hydrocarbon rubber. Kautsch. Gummi Kunstst. 2013, 7–8, 31–36. [Google Scholar]
- Shahamatifard, F.; Rodrigue, D.; Park, K.W.; Frikha, S.; Mighri, F. Natural rubber nanocomposites: Effect of carbon black/multi-walled carbon nanotubes hybrid fillers on the mechanical properties and thermal conductivity. Polym.-Plast. Technol. Mater. 2021, 60, 1686–1696. [Google Scholar]
- Wang, G.X.; Yu, Q.Z.; Hu, Y.M.; Zhao, G.Y.; Chen, J.W.; Li, H.; Jiang, N.; Hu, D.W.; Xu, Y.Q.; Zhu, Y.T.; et al. Influence of the filler dimensionality on the electrical, mechanical and electromagnetic shielding properties of isoprene rubber-based flexible conductive composites. Compos. Commun. 2020, 21, 100417. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Mishra, Y.K. Nanocarbon Reinforced Rubber Nanocomposites: Detailed Insights about Mechanical, Dynamical Mechanical Properties, Payne, and Mullin Effects. Nanomater. 2018, 8, 945. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Fu, X.; Luo, M.; Xie, Z.; Huang, C.; Zhou, J.; Zhu, Y.; Huang, G.; Wu, J. Synergistic effect of CB and GO/CNT hybrid fillers on the mechanical properties and fatigue behavior of NR composites. RSC Adv. 2018, 8, 10573–10581. [Google Scholar] [CrossRef] [Green Version]
- Valentini, L.; Bittolo Bon, S.; Lopez-Manchado, M.A.; Verdejo, R.; Pappalardo, L.; Bolognini, A.; Alvino, A.; Borsini, S.; Berardo, A.; Pugno, N.M. Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos. Sci. Technol. 2016, 128, 123–130. [Google Scholar] [CrossRef]
- Malas, A.; Das, C.K.; Das, A.; Heinrich, G. Development of expanded graphite filled natural rubber vulcanizates in presence and absence of carbon black: Mechanical, thermal and morphological properties. Mater. Des. 2012, 39, 410–417. [Google Scholar] [CrossRef]
- Roy, A.; Kar, S.; Ghosal, K.; Naskar, K.; Bhowmick, A.K. Flourishing an Electrochemical Synthetic Route toward Carbon Black-Intercalated Graphene as a Neoteric Hybrid Nanofiller for Multifunctional Polymer Nanocomposites. Ind. Eng. Chem. Res. 2021, 60, 5758–5769. [Google Scholar] [CrossRef]
- Shakun, A.; Anyszka, R.; Sarlin, E.; Blume, A.; Vuorinen, J. Influence of surface modified nanodiamonds on dielectric and mechanical properties of silicone composites. Polymers 2019, 11, 1104. [Google Scholar] [CrossRef] [Green Version]
- Mokhireva, K.A.; Svistkov, A.L.; Solod’ko, V.N.; Komar, L.A.; Stöckelhuber, K.W. Experimental analysis of the effect of carbon nanoparticles with different geometry on the appearance of anisotropy of mechanical properties in elastomeric composites. Polym. Test. 2017, 59, 46–54. [Google Scholar] [CrossRef]
- Dolmatov, V. Polymer-diamond composites based on detonation nanodiamonds. Part 2. J. Superhard Mater. 2007, 29, 65–75. [Google Scholar] [CrossRef]
- Krueger, A. The structure and reactivity of nanoscale diamond. J. Mater. Chem. 2008, 18, 1485–1492. [Google Scholar] [CrossRef]
- Dolmatov, V.Y.; Fujimura, T. Physical and chemical problems of modification of detonation nanodiamond surface properties. In Synthesis, Properties and Applications of Ultrananocrystalline Diamond; Gruen, D., Shenderova, O., Vul’, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 192, pp. 217–230. [Google Scholar]
- Jafarpour, E.; Shojaei, A.; Ahmadijokani, F. High-performance styrene-butadiene rubber nanocomposite based on carbon nanotube/nanodiamond hybrid filler with synergistic thermal conduction characteristic and electrical insulating properties. Polymers 2020, 196, 122470. [Google Scholar] [CrossRef]
- Dolmatov, V.Y. Composition Materials Based on Elastomer and Polymer Matrices Filled with Nanodiamonds of Detonation Synthesis. Nanotechnol. Russ. 2009, 4, 556–575. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Gogotsi, Y. Nanodiamond–polymer composites. Diam. Relat. Mater. 2015, 58, 161–171. [Google Scholar] [CrossRef]
- Nagornaya, M.N.; Razdyakonova, G.I.; Khodakova, S.Y. The Effect of Functional Groups of Carbon Black on Rubber Properties. Procedia Eng. 2016, 15, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, M.; Seyger, R.; Dierkes, W.K.; Bielinski, D.; Noordermeer, J.W.M. Swelling of EPDM Rubbers for Oil-Well Applications as Influenced by Medium Composition and Temperature I: Literature and theoretical background. Elastomery 2016, 20, 6–17. [Google Scholar]
- Leblanc, J.L.; Hardy, P. Evolution of bound rubber during the storage of uncured compounds. Kautsch. Gummi Kumstst. 1991, 44, 1119–1124. [Google Scholar]
- ISO 37:2017. Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- ISO 34-1:2010. Rubber, Vulcanized or Thermolastic—Determination of Tear Strength—Part 1: Trouser, Angle and Crescent Test Pieces; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- ASTM D 2240-05. Standard Test Method for Durometer Hardness; ASTM: West Conshehocken, PA, USA, 2010. [Google Scholar]
- Kidalov, S.V.; Shakhov, F.M.; Vul, A.Y.; Ozerin, A.N. Grain-boundary heat conductance in nanodiamond composites. Diam. Relat. Mater. 2010, 19, 976–980. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef]
- Hoikkanen, M.; Poikelispää, M.; Das, A.; Reuter, U.; Dierkes, W.; Vuorinen, J. Evaluation of mechanical and dynamic mechanical properties of multiwalled carbon nanotube-based ethylene-propylene copolymer composites mixed by masterbatch dilution. J. Comp. Mater. 2016, 50, 4093–4101. [Google Scholar] [CrossRef]
- Rabiei, S.; Shojaei, A. Vulcanization kinetics and reversion behavior of natural rubber/styrene-butadiene rubber blend filled with nanodiamond—the role of sulfur curing system. Eur. Polym. J. 2016, 81, 98–113. [Google Scholar] [CrossRef]
- Shanmugharaj, A.M.; Bhowmick, A.K. Influence of novel electronbeam modified surface treated dual phase filler on rheometric andmechanical properties of styrene butadiene rubber vulcanizates. Rubber Chem Technol. 2003, 76, 299–317. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, J.W.; Lee, D.Y.; Seo, K.H. Correlation between the Crosslink Characteristics and Mechanical Properties of Natural Rubber Compound via Accelerators and Reinforcement. Polymers 2020, 12, 2020. [Google Scholar] [CrossRef]
- Carbodeon uDiamond® Vox P Specific Characteristics. Available online: http://www.carbodeon.net/index.php/en/nanomaterials/udiamond-functionalised-powders/udiamond-vox-p (accessed on 28 October 2021).
- Growney, D.J.; Fowler, P.W.; Mykhaylyk, O.O.; Fielding, L.A.; Derry, M.J.; Aragrag, N.; Lamb, G.D.; Armes, S.P. Determination of effective particle density for sterically stabilized carbon black particles: Effect of diblock copolymer stabilizer composition. Langmuir 2015, 31, 8764–8773. [Google Scholar] [CrossRef]
- Shakun, A.; Vuorinen, J.; Hoikkanen, M.; Poikelispää, M.; Das, A. Hard nanodiamonds in soft rubbers: Past. present and future —A review. Compos. Part A Appl Sci. Manuf. 2014, 64, 49–69. [Google Scholar] [CrossRef]
- Das, A.; Stöckelhuber, K.W.; Rooj, S.; Wang, D.-Y.; Heinrich, G. Synergistic effects of expanded nanoclay and carbon black on natural rubber compounds. Kautsch. Gummi Kunstst. 2010, 63, 296–302. [Google Scholar]
- Neitzel, I.; Mochalin, V.; Bares, J.; Carpick, R.W.; Erdemir, A.; Gogotsi, Y. Tribological Properties of Nanodiamond—Epoxy Composites. Tribol. Lett. 2012, 47, 195–202. [Google Scholar] [CrossRef]
Ingredient | Type/Producer | Amount (phr) | Mixing (min) |
---|---|---|---|
NR | SMR10 | 80 | 0 |
BR | Buna-cis-132/Dow Chemical Company (Midland, MI, USA) | 20 | |
ND | uDiamond® Vox P/ Carbodeon | x = 0/0.5/1/2.5/5 | 1 |
CB 6PPD TMQ ZnO | N-234/Evonik (Cologne, Germany) Lanxess (Brunsbüttel, Germany) Lanxess (Brunsbüttel, Germany) Grillo Zinkoxid GmbH (Goslar, Germany) | 25 − x 2.0 1.0 5.0 | 1.5 |
TDAE-oil | Vivatec 500/Hansen & Rosenthal GmbH (Hamburg, Germany) | 8.0 | 2 * |
Stearic acid | Oleon N.V (Oelegem, Belgium) | 2.0 | |
Ceresine wax | Sasosl Wax GmbH (Hamburg, Germany | 1.5 | |
CBS Sulphur | Lanxess (Cologne, Germany) Struktol (Hamburg, Germany) | 1.5 1.5 | Mill: 5 |
Apparent Crosslink Density (-) | Bound Rubber (%) | Payne Effect, G0.56–G∞ (MPa) | |
---|---|---|---|
ND 0 | 0.36 ± 0.01 | 43.7 ± 3.1 | 0.94 |
ND 0.5 | 0.39 ± 0.01 | 42.4 ± 6.7 | 1.39 |
ND 1 | 0.35 ± 0.01 | 41.8 ± 4.0 | 1.44 |
ND 2.5 | 0.41 ± 0.06 | 44.3 ± 1.3 | 1.3 |
ND 5 | 0.45 ± 0.03 | 43.2 ± 6.1 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poikelispää, M.; Shakun, A.; Sarlin, E. Nanodiamond—Carbon Black Hybrid Filler System for Demanding Applications of Natural Rubber—Butadiene Rubber Composite. Appl. Sci. 2021, 11, 10085. https://doi.org/10.3390/app112110085
Poikelispää M, Shakun A, Sarlin E. Nanodiamond—Carbon Black Hybrid Filler System for Demanding Applications of Natural Rubber—Butadiene Rubber Composite. Applied Sciences. 2021; 11(21):10085. https://doi.org/10.3390/app112110085
Chicago/Turabian StylePoikelispää, Minna, Alexandra Shakun, and Essi Sarlin. 2021. "Nanodiamond—Carbon Black Hybrid Filler System for Demanding Applications of Natural Rubber—Butadiene Rubber Composite" Applied Sciences 11, no. 21: 10085. https://doi.org/10.3390/app112110085
APA StylePoikelispää, M., Shakun, A., & Sarlin, E. (2021). Nanodiamond—Carbon Black Hybrid Filler System for Demanding Applications of Natural Rubber—Butadiene Rubber Composite. Applied Sciences, 11(21), 10085. https://doi.org/10.3390/app112110085