Effects of Narrow Beam Phased Antenna Arrays over the Radio Channel Metrics, Doppler Power Spectrum, and Coherence Time, in a Context of 5G Frequency Bands
Abstract
:1. Introduction
2. Doppler Power Spectrum (DPS) and Coherence Time (CT) as Radio Channel Metrics
2.1. Doppler Power Spectrum
2.2. Coherence Time Models
3. Dependence of Geometric Placement of Antenna Array Elements in Regards to Radio Link Improvements
3.1. Geometric Assessment of Phased Antenna Arrays
3.2. Effects of Circular Antenna Arrays over Doppler Power Spectrum and Coherence Time Metrics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five Disruptive Technology Directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef] [Green Version]
- 3GPP TR 36.873 v.14.0.0, Study on Channel Model for Frequency Spectrum Above 6 GHz, January 2015. Available online: http://www.3gpp.org (accessed on 19 August 2021).
- Rappaport, T.S.; Sun, S.; Shafi, M. 5G Channel Model with Improved Accuracy and Efficiency in mmWave Bands. IEEE 5G Tech Focus 2017, 1, 1–6. [Google Scholar]
- Rappaport, T.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Bansal, G.; Jain, A.K.; Mishra, T. 5G Technology and Their Challenges. J. Adv. Database Manag. Syst. 2019, 6, 1–7. [Google Scholar]
- Rappaport, T.S.; Heath, R.W., Jr.; Daniels, R.C.; Murdock, J.N. Millimeter Wave Wireless Communications; Pearson/Prentice-Hall: Upper Saddle River, NJ, USA, 2015. [Google Scholar]
- Huo, Y.; Dong, X.; Xu, W.; Yuen, M. Enabling Multi-Functional 5G and Beyond User Equipment: A Survey and Tutorial. IEEE Access 2019, 7, 116975–117008. [Google Scholar] [CrossRef]
- Thompson, J.; Ce, X.; Wu, C.X.; Irmer, R.; Jiang, G.; Fettweis, G.; Alamouti, A. 5G Wireless Communication Systems: Prospects and Challenges. IEEE Commun. Mag. 2014, 52, 62–64. [Google Scholar] [CrossRef]
- Zhao, K.; Ying, Z.; He, S. EMF Exposure Study Concerning mmWave Phased Array in Mobile Devices for 5G Communication. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1132–1135. [Google Scholar] [CrossRef]
- Sun, S.; Rappaport, T.S.; Shafi, M.; Tang, P.; Zhang, J.; Smith, P.J. Propagation models and performance evaluation for 5 g millimeter-wave bands. IEEE Trans. Veh. Technol. 2018, 67, 8422–8439. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Zhang, X.; Zhou, S. Fast Accurate Beam and Channel Tracking for Two-Dimensional Phased Antenna Arrays. IEEE Access 2020, 8, 209844–209877. [Google Scholar] [CrossRef]
- Penttinen, J.T.J. 5G Explained: Security and Deployment of Advanced Mobile Communications; Wiley & Sons: Atlanta, GA, USA, 2019. [Google Scholar]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Roh, W.; Seol, J.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Shafi, M.; Zhang, J.; Tataria, H.; Molisch, A.F.; Sun, S.; Rappaport, T.S.; Tufvesson, F.; Wu, S.; Kitao, K. Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems. IEEE Commun. Mag. 2018, 56, 14–20. [Google Scholar] [CrossRef]
- Clarke, R.H. A Statistical Theory of Mobile-Radio Reception. Bell Syst. Tech. J. 1968, 47, 957–1000. [Google Scholar] [CrossRef]
- Jakes, W.C. Microwave Mobile Communications; Wiley & Sons/IEEE Press: New York, NY, USA, 1974. [Google Scholar]
- Gans, M. A Power-Spectral Theory of Propagation in the Mobile-Radio Environment. IEEE Trans. Veh. Technol. 1972, 21, 27–38. [Google Scholar] [CrossRef]
- Erceg, V.; Schumacher, L.; Kyritsi, P.; Molisch, A.; Baum, D.S.; Gorokhov, A.Y.; Oestges, C.; Li, Q.; Yu, K.; Tal, N.; et al. Tgn channel models—IEEE p802.11. IEEE Tech. Rep. 2004. Available online: https://www.iitk.ac.in/mwn/papers/11-03-0940-01-000n-tgn-channel-models.pdf (accessed on 19 August 2021).
- Nawaz, S.J.; Khan, N.M.; Patwary, M.N.; Moniri, M. Effect of Directional Antenna on the Doppler Spectrum in 3-D Mobile Radio Propagation Environment. IEEE Trans. Veh. Technol. 2011, 60, 2895–2903. [Google Scholar] [CrossRef]
- Cheng, L.; Henty, B.; Bai, F.; Stancil, D.D. Doppler Spread and Coherence Time of Rural and Highway Vehicle-to-Vehicle Channels at 5.9 GHz. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications Conference, New Orleans, LA, USA, 30 November–4 December 2008; pp. 1–6. [Google Scholar]
- Va, V.; Heath, R.W. Basic Relationship Between Channel Coherence Time and Beamwidth in Vehicular Channels. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5. [Google Scholar]
- Perahia, E.; Stacey, R. Next Generation Wireless LANs: 802.11n and 802.11ac, 2nd ed.; Cambrige University Press: Cambrige, UK, 2013. [Google Scholar]
- Rappaport, T.S. Wireless Communications: Principles & Practice; Prentice Hall: Upper Sadler River, NJ, USA, 1996. [Google Scholar]
- Sklar, B. Rayleigh Fading Channels in Mobile Digital Communication Systems and Characterization. IEEE Commun. Mag. 1997, 35, 90–100. [Google Scholar] [CrossRef]
- Greewood, D.; Hanzo, L. Characterisation of Mobile Radio Channels; Steele, R., Ed.; Pentech Press: London, UK, 1994. [Google Scholar]
- Steele, R.; Hanzo, L. Mobile Radio Communications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Mohan, N.; Zinka, S.R.; Dassan, K. Design and analysis of linear, planar and circular array using ARRAY TOOL. Int. J. Appl. Eng. Res. (IJAER) 2015, 10, 22681–22686. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; John Wiley & Son: Hoboken, NJ, USA, 2005. [Google Scholar]
- Stutzman, W.L.; Thiele, G. Antenna Theory and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Elliott, R. Antenna Theory and Design: IEEE Press Series on Electromagnetic Wave Theory; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Zinka, S.; Jeong, I.B.; Chun, J.H.; Kim, J.P. A novel geometrical technique for determining optimal array antenna lattice configuration. Antennas Propag. 2010, 58, 404–412. [Google Scholar] [CrossRef]
- Josefsson, L.; Persson, P. Conformal Array Antenna Theory and Design: IEEE Press Series on Electromagnetic Wave Theory; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hamdi, B.; Liman, S.; Aguili, T. Uniform and Concentric Circular Antenna Arrays Synthesis for Smart Antenna Systems Using Artificial Neural Network Algorithm. Prog. Electromagn. Res. B 2016, 67, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; He, X.; Chen, X.; Luo, X.; Li, X. Synthesis of thinned concentric circular antenna arrays using modified TLBO algorithm. Int. J. Antennas Propag. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Reyna, A.; Panduroa, M.A.; Covarrubias, D.H.; Mendeza, A. Design of steerable concentric rings array for low side lobe level. Sci. Iran. 2012, 19, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jiao, Y.-C.; Chen, B. Optimization of concentric ring array geometry for 3D beam scanning. Int. J. Antennas Propag. 2012, 2012, 625437. [Google Scholar] [CrossRef]
- Mandal, D.; Ghoshal, S.P.; Bhattacharjee, A.K. Optimized radii and excitations with concentric circular antenna array for maximum sidelobe level reduction using wavelet mutation based particle warm optimization techniques. Telecommun. Syst. 2013, 52, 2015–2025. [Google Scholar] [CrossRef]
Array | BW (Degrees) | Gain (dB) |
---|---|---|
Planar 8 × 8 | 28.98 | 15.86 |
Planar 16 × 16 | 14.4 | 21.94 |
Circular 21 elements | 25.37 | 17.015 |
Circular 47 elements | 11.87 | 23.61 |
Concentric rings 42 elements (3 rings) | 32.4 | 14.4 |
Concentric rings 196 elements (7 rings) | 16.92 | 20.53 |
Variable or Parameter | Value | |
---|---|---|
: Carrier frequencies | 700 MHz, 3.5 GHz, 26 GHz, 48 GHz | |
: Normalized radius | 700 , 560 , 520 , 480 | |
v: Users velocity | 30 km/h | |
R: Correlation coefficient | 0.5 | |
: Pointing angle (small) | ||
: Pointing angle (not small) | ||
Circular array | 21 elements | 47 elements |
: Array gain | 16.5 dB | 24.1 dB |
: Beamwidth |
Model | Gans (CA-21) | Gans (CA-47) | Clarke |
---|---|---|---|
700 MHz | −4.97 dB | −3.32 dB | −16.1 dB |
3.5 GHz | −12 dB | −10.31 dB | −23.1 dB |
26 GHz | −20.67 dB | −19.02 dB | −31.8 dB |
48 GHz | −23.33 dB | −21.7 dB | −34.5 dB |
Frequency | Array | Models | ||
---|---|---|---|---|
VaMod () | VaMod () | IEEE | ||
700 MHz | CA-21 | 170.3 ms | 14.51 ms | 12.27 ms |
CA-47 | 843.31 ms | 32.66 ms | ||
3.5 GHz | CA-21 | 34.06 ms | 3 ms | 2.48 ms |
CA-47 | 168.66 ms | 6.53 ms | ||
26 GHz | CA-21 | 4.6 ms | 0.4 ms | 0.33 ms |
CA-47 | 22.7 ms | 0.88 ms | ||
48 GHz | CA-21 | 2.5 ms | 0.21 ms | 0.18 ms |
CA-47 | 12.3 ms | 0.47 ms |
Frequencies Examined | Parameter Studied | Tx / Rx Source Specifications | Comparison of Different Sources | |
---|---|---|---|---|
This work | 0.7, 3.5, 26. 48 GHz | DPS and TC | Circular antenna array (full-wave simulated) | Planar, circular and concentric rings array |
[20] | Not specified | DPS | Directional antenna | Heigth of the base station |
[21] | 5.9 GHz | DS and TC | Not specified | Not specified |
[22] | 60 GHz | TC | Not specified | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, B.J.; Covarrubias, D.H.; Yepes, L.F.; Panduro, M.A.; Juárez, E. Effects of Narrow Beam Phased Antenna Arrays over the Radio Channel Metrics, Doppler Power Spectrum, and Coherence Time, in a Context of 5G Frequency Bands. Appl. Sci. 2021, 11, 10081. https://doi.org/10.3390/app112110081
Sánchez BJ, Covarrubias DH, Yepes LF, Panduro MA, Juárez E. Effects of Narrow Beam Phased Antenna Arrays over the Radio Channel Metrics, Doppler Power Spectrum, and Coherence Time, in a Context of 5G Frequency Bands. Applied Sciences. 2021; 11(21):10081. https://doi.org/10.3390/app112110081
Chicago/Turabian StyleSánchez, Brian J., David H. Covarrubias, Leonardo F. Yepes, Marco A. Panduro, and Elizvan Juárez. 2021. "Effects of Narrow Beam Phased Antenna Arrays over the Radio Channel Metrics, Doppler Power Spectrum, and Coherence Time, in a Context of 5G Frequency Bands" Applied Sciences 11, no. 21: 10081. https://doi.org/10.3390/app112110081
APA StyleSánchez, B. J., Covarrubias, D. H., Yepes, L. F., Panduro, M. A., & Juárez, E. (2021). Effects of Narrow Beam Phased Antenna Arrays over the Radio Channel Metrics, Doppler Power Spectrum, and Coherence Time, in a Context of 5G Frequency Bands. Applied Sciences, 11(21), 10081. https://doi.org/10.3390/app112110081