Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty
Abstract
1. Introduction
2. Materials and Methods
2.1. 3D Heterogeneous Aquifer Models and Simulation Conditions
2.2. DGSA for Evaluating the Significance of Spatial Properties
2.3. NSGA-II for Multi-Objective Optimization Calibrating Well Allocations
3. Results and Discussion
3.1. Spatial Properties Influencing CO2 Trapping
3.2. Multi-Objective Optimization with Well Allocations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer: Berlin, Germany, 2007; ISBN 9780387332543. [Google Scholar]
- Chiandussi, G.; Codegone, M.; Ferrero, S.; Varesio, F.E. Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 2012, 63, 912–942. [Google Scholar] [CrossRef]
- Li, H.; Deb, K.; Zhang, Q.; Suganthan, P.N.; Chen, L. Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties. Swam Evol. Comput. 2019, 46, 104–117. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Pang, L.M.; Ishibuchi, H.; Shang, K. NSGA-II with simple modification works well a wide variety of many-objective problems. IEEE Access 2020, 8, 190240–190250. [Google Scholar] [CrossRef]
- Han, Y.; Park, C.; Kang, J.M. Prediction of nonlinear production performance in waterflooding project using a multi-objective evolutionary algorithm. Energy Explor. Exploit. 2011, 29, 129–142. [Google Scholar] [CrossRef]
- Min, B.; Park, C.; Jang, I.; Kang, J.M.; Chung, S. Development of Pareto-based evolutionary model integrated with dynamic goal programming and successive linear objective reduction. Appl. Soft Comput. 2015, 35, 75–112. [Google Scholar] [CrossRef]
- Wang, R. An improved nondominated sorting genetic algorithm for multiobjective problem. Math. Probl. Eng. 2016, 2016, 1519542. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J.M.; Park, C.; Park, Y.; Lim, S. Multi-objective history matching with a proxy model for the characterization of production performances at the shale gas reservoir. Energies 2017, 10, 579. [Google Scholar] [CrossRef]
- Ambrose, W.A.; Lakshminarasimhan, S.; Holtz, M.H.; Núñes-López, V.; Hovorka, S.D.; Duncan, I. Geological factors controlling CO2 storage capacity and performances: Case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage. Environ. Geol. 2008, 54, 1619–1633. [Google Scholar] [CrossRef]
- Oh, J.; Park, C.; Ahn, T. Sensitivity analysis of rock properties for CO2 sequestration into heterogeneous saline aquifers. In Proceeding of the 2019 AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2019; #GC53H-1230. Available online: https://agu-do03.confex.com/agu/fm19/meetingapp.cgi/Paper/562633 (accessed on 15 October 2021).
- Bosshart, N.W.; Azzolina, N.A.; Ayash, S.C.; Peck, W.D.; Gorecki, C.D.; Ge, J.; Jiang, T.; Dotzenrod, N.W. Quantifying the effects of depositional environment on deep saline formation CO2 storage efficiency and rate. Int. J. Greenh. Gas Con. 2018, 69, 8–19. [Google Scholar] [CrossRef]
- Lim, S.; Park, C.; Kim, J.; Jang, I. Integrated data assimilation and distance-based model selection with ensemble Kalman filter for characterization of uncertain geological scenarios. Nat. Resour. Res. 2020, 29, 1063–1085. [Google Scholar] [CrossRef]
- Fenwick, D.; Scheidt, C.; Caers, J. Quantifying asymmetric parameter interactions in sensitivity analysis: Application to reservoir modeling. Math. Geosci. 2014, 46, 493–511. [Google Scholar] [CrossRef]
- Park, J.; Yang, G.; Satija, A.; Scheidt, C.; Caers, J. DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments. Comput. Geosci. 2016, 97, 15–29. [Google Scholar] [CrossRef]
- Scheidt, C.; Li, L.; Caers, J. Quantifying Uncertainty in Subsurface Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119325833. [Google Scholar]
- Hoffmann, R.; Dassargues, A.; Goderniaux, P.; Hermans, T. Heterogeneity and prior uncertainty investigation using a joint heat and solute tracer experiment in alluvial sediments. Front. Earth Sci. 2019, 7, 108. [Google Scholar] [CrossRef]
- Park, J.; Caers, J. Direct forecasting of global and spatial model parameters from dynamic data. Comput. Geosci. 2020, 143, 104567. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Con. 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Kumar, S.; Foroozesh, J.; Edlmann, K.; Rezk, M.G.; Lim, C.Y. A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers. J. Nat. Gas Sci. Eng. 2020, 81, 103437. [Google Scholar] [CrossRef]
- Yang, F.; Bai, B.; Tang, D.; Shari, D.; David, W. Characteristics of CO2 sequestration in saline aquifers. Pet. Sci. 2010, 7, 83–92. [Google Scholar] [CrossRef]
- De Silva, P.N.K.; Ranjith, P.G. A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel 2012, 93, 13–27. [Google Scholar] [CrossRef]
- Jo, S.; Park, C.; Ryu, D.W.; Ahn, S. Adaptive surrogate estimation with spatial features using a deep convolutional autoencoder for CO2 geological sequestration. Energies 2021, 14, 413. [Google Scholar] [CrossRef]
- Nogues, J.P.; Nordbotten, J.M.; Celia, M.A. Detecting leakage of brine or CO2 through abandoned wells in a geological sequestration operation using pressure monitoring wells. Energy Procedia 2011, 4, 3620–3627. [Google Scholar] [CrossRef][Green Version]
- González-Nicolás, A.; Baú, D.; Cody, B.M. Application of binary permeability fields for the study of CO2 leakage from geological carbon storage in saline aquifers of the Michigan basin. Math. Geosci. 2018, 50, 525–547. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Sun, Y.; Chen, M.; Hao, Y.; Wolery, T.J.; Bourcier, W.L.; Court, B.; Celia, M.A.; Friedmann, S.J.; Aines, R.D. Actie CO2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity. Int. J. Greenh. Gas Con. 2012, 6, 230–245. [Google Scholar] [CrossRef]
- Harp, D.R.; Stauffer, P.H.; O’Malley, D.; Jiao, Z.; Egenolf, E.P.; Miller, T.A.; Martinez, D.; Hunter, K.A.; Middleton, R.S.; Bielicki, J.M.; et al. Development of robust pressure management strategies for geological CO2 sequestration. Int. J. Greenh. Gas Con. 2017, 64, 43–59. [Google Scholar] [CrossRef]
- González-Nicolás, A.; Cihan, A.; Petrusak, R.; Zhou, Q.; Trautz, R.; Riestenberg, D.; Godec, M.; Birkholzer, J.T. Pressure management via brine extraction in geological CO2 storage: Adaptive optimization strategies under poorly characterized reservoir conditions. Int. J. Greenh. Gas Con. 2019, 83, 176–185. [Google Scholar] [CrossRef]
- González-Nicolás, A.; Trevisan, L.; Illangasekare, T.H.; Cihan, A.; Birkholzer, J. Enhancing capillary trapping effectiveness through proper time scheduling of injection of supercritical CO2 in heterogeneous formations. Greenh. Gases 2017, 7, 339–352. [Google Scholar] [CrossRef]
- Cameron, D.A.; Durlofsky, L.J. Optimization of well placement, CO2 injection rates, and brine cycling for geological carbon sequestration. Int. J. Greenh. Gas Con. 2012, 10, 100–112. [Google Scholar] [CrossRef]
- Tadjer, A.; Bratvold, R.B. Managing uncertainty in geological CO2 storage using Bayesian evidential learning. Energies 2021, 14, 1557. [Google Scholar] [CrossRef]
- Petvipusit, R.; Elsheikh, A.H.; Laforce, T.; King, P.R.; Blunt, M.J. A robust multi-criterion optimization of CO2 sequestration under model uncertainty. In Proceedings of the Second EAGE Sustainable Earth Sciences Conference and Exhibition, Pau, France, 30 September–4 October 2013. cp-361-00015. [Google Scholar] [CrossRef]
- Jayne, R.S.; Wu, H.; Pollyea, R.M. Geologic CO2 sequestration and permeability uncertainty in a highly heterogeneous reservoir. Int. J. Greenh. Gas Con. 2019, 83, 128–139. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef]
- Shamshiri, H.; Jafarpour, B. Controlled CO2 injection into heterogeneous geological formations for improved solubility and residual trapping. Water Resour. Res. 2012, 48, W02530. [Google Scholar] [CrossRef]
- Agarwal, R.K. Modeling, simulation, and optimization of geological sequestration of CO2. J. Fluids Eng. 2019, 141, 100801. [Google Scholar] [CrossRef]
- Jahediesfanjani, H.; Warwick, P.D.; Anderson, S.T. Estimating the pressure-limited CO2 injection and storage capacity of the United States saline formations: Effect of the presence of hydrocarbon reservoirs. Int. J. Greenh. Gas Con. 2018, 79, 14–24. [Google Scholar] [CrossRef]
- Li, C.; Maggi, F.; Zhang, K.; Guo, C.; Gan, Y.; El-Zein, A.; Pan, Z.; Shen, L. Effects of variable injection rate on reservoir responses and implications for CO2 storage in saline aquifers. Greenh. Gases 2019, 9, 652–671. [Google Scholar] [CrossRef]
- Burton, M.; Kumar, N.; Bryant, S.L. CO2 injectivity into brine aquifers: Why relative permeability matters as much as absolute permeability. Energy Procedia 2009, 1, 3091–3098. [Google Scholar] [CrossRef]
- Safarzadeh, M.A.; Motahhari, S.M. Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II). Pet. Sci. 2014, 11, 460–468. [Google Scholar] [CrossRef]
- Zhang, S.; Zhuang, Y.; Tao, R.; Liu, L.; Zhang, L.; Du, J. Multi-objective optimization for the deployment of carbon capture utilization and storage supply chain considering economic and environmental performance. J. Clean. Prod. 2020, 270, 122481. [Google Scholar] [CrossRef]
- Ma, Y.Z. Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling; Springer: Cham, Switzerland, 2019; ISBN 9783030178598. [Google Scholar] [CrossRef]
- Lie, K.-A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST); Cambridge University Press: London, UK, 2019; ISBN 9781108492430. [Google Scholar]
- Lie, K.-A.; Krogstad, S.; Ligaarden, I.S.; Natvig, J.R.; Nilsen, H.M.; Skaflestad, B. Open-source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 2012, 16, 297–322. [Google Scholar] [CrossRef]
Property | Abbreviation | Value Range |
---|---|---|
1 Mean permeability of sandstone 2 (millidarcy) | PermSand | 300~450 |
Mean porosity of sandstone (unitless) | PoroSand | 0.22~0.28 |
3 Std of permeability (sandstone; millidarcy) | StdPerm | 12.5~50 |
Std of porosity (sandstone; unitless) | StdPoro | 0.005~0.02 |
Shale volume ratio (%) | SVR | 2~20 |
Dykstra–Parsons coefficient (unitless) | VDP | 0.1896~0.9185 |
Property (Abbreviation) 1 | L Aquifer | H Aquifer |
---|---|---|
PoroSand | 0.274 | 0.220 |
PermSand | 301.5 | 448.7 |
SVR | 2 | 20 |
VDP | 0.3488 | 0.9169 |
StdPoro | 0.012 | 0.012 |
StdPerm | 14.0 | 30.7 |
L-1 | L-2 | H-1 | H-2 | ||
---|---|---|---|---|---|
Well allocation (m3/day) | I1 well | 14,874 | 14,068 | 14,925 | 14,831 |
I2 well | 371 | 360 | 302 | 300 | |
I3 well | 389 | 463 | 108 | 108 | |
I4 well | 366 | 1109 | 665 | 761 | |
Maximum BHP 1 (bar) | I1 well | 132.55 | 132.13 | 134.35 | 134.29 |
I2 well | 125.88 | 125.90 | 125.72 | 125.72 | |
I3 well | 123.06 | 123.15 | 122.81 | 122.82 | |
I4 well | 123.51 | 124.18 | 123.61 | 123.68 | |
Subtotal | 505.00 | 505.37 | 506.49 | 506.50 | |
Trapping CO2 volume 2 (m3) | 754,304 | 759,058 | 581,682 | 582,005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Oh, J.; Jo, S.; Jang, I.; Lee, K.S. Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty. Appl. Sci. 2021, 11, 9759. https://doi.org/10.3390/app11209759
Park C, Oh J, Jo S, Jang I, Lee KS. Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty. Applied Sciences. 2021; 11(20):9759. https://doi.org/10.3390/app11209759
Chicago/Turabian StylePark, Changhyup, Jaehwan Oh, Suryeom Jo, Ilsik Jang, and Kun Sang Lee. 2021. "Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty" Applied Sciences 11, no. 20: 9759. https://doi.org/10.3390/app11209759
APA StylePark, C., Oh, J., Jo, S., Jang, I., & Lee, K. S. (2021). Multi-Objective Optimization of CO2 Sequestration in Heterogeneous Saline Aquifers under Geological Uncertainty. Applied Sciences, 11(20), 9759. https://doi.org/10.3390/app11209759