Reconstruction of Three-Dimensional Tibiofemoral Kinematics Using Single-Plane Fluoroscopy and a Personalized Kinematic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imaging Acquisition
2.2. Personalize Tibiofemoral Kinematic Model
2.2.1. Ligament Endpoints
2.2.2. Ligament Length
2.3. Multibody Model-Based Tracking Scheme
2.3.1. Single-Body 3D/2D Image Registration
2.3.2. Multibody Image Registration with Two-Level Optimization
2.3.3. Multibody Image Registration with Hybrid Similarity Measure
2.4. Evaluation of MbMBT
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hume, D.R.; Kefala, V.; Harris, M.D.; Shelburne, K.B. Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living. Ann. Biomed. Eng. 2018, 46, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-D.; Lu, T.-W.; Lin, C.-C.; Kuo, M.-Y.; Hsu, H.-C.; Shen, W.-C. Soft tissue artefacts of skin markers on the lower limb during cycling: Effects of joint angles and pedal resistance. J. Biomech. 2017, 62, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Veldpaus, F.E.; Woltring, H.J.; Dortmans, L.J.M.G. A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. J. Biomech. 1988, 21, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.W.; O’Connor, J.J. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 1999, 32, 129–134. [Google Scholar] [CrossRef]
- Leardini, A.; Belvedere, C.; Nardini, F.; Sancisi, N.; Conconi, M.; Parenti-Castelli, V. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J. Biomech. 2017, 62, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Richard, V.; Cappozzo, A.; Dumas, R. Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation. J. Biomech. 2017, 62, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, J.; Martínez-Reina, J.; Mayo, J. A method to evaluate human skeletal models using marker residuals and global optimization. Mech. Mach. Theory 2014, 73, 259–272. [Google Scholar] [CrossRef]
- Reinbolt, J.A.; Schutte, J.F.; Fregly, B.J.; Koh, B.I.; Haftka, R.T.; George, A.D.; Mitchell, K.H. Determination of patient-specific multi-joint kinematic models through two-level optimization. J. Biomech. 2005, 38, 621–626. [Google Scholar] [CrossRef]
- Andersen, M.S.; Benoit, D.L.; Damsgaard, M.; Ramsey, D.K.; Rasmussen, J. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 2010, 43, 268–273. [Google Scholar] [CrossRef]
- Richard, V.; Lamberto, G.; Lu, T.-W.; Cappozzo, A.; Dumas, R. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study. PLoS ONE 2016, 11, e0157010. [Google Scholar] [CrossRef] [Green Version]
- Gasparutto, X.; Sancisi, N.; Jacquelin, E.; Parenti-Castelli, V.; Dumas, R. Validation of a multi-body optimization with knee kinematic models including ligament constraints. J. Biomech. 2015, 48, 1141–1146. [Google Scholar] [CrossRef]
- Clément, J.; Dumas, R.; Hagemeister, N.; de Guise, J.A. Soft tissue artifact compensation in knee kinematics by multi-body optimization: Performance of subject-specific knee joint models. J. Biomech. 2015, 48, 3796–3802. [Google Scholar] [CrossRef] [PubMed]
- Duprey, S.; Cheze, L.; Dumas, R. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J. Biomech. 2010, 43, 2858–2862. [Google Scholar] [CrossRef] [Green Version]
- Feikes, J.D.; O’Connor, J.J.; Zavatsky, A.B. A constraint-based approach to modelling the mobility of the human knee joint. J. Biomech. 2003, 36, 125–129. [Google Scholar] [CrossRef]
- Sancisi, N.; Parenti-Castelli, V. A New Kinematic Model of the Passive Motion of the Knee Inclusive of the Patella. J. Mech. Robot. 2011, 3, 041003. [Google Scholar] [CrossRef]
- Brito da Luz, S.; Modenese, L.; Sancisi, N.; Mills, P.M.; Kennedy, B.; Beck, B.R.; Lloyd, D.G. Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J. Biomech. 2017, 53, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardini, F.; Belvedere, C.; Sancisi, N.; Conconi, M.; Leardini, A.; Durante, S.; Parenti-Castelli, V. An Anatomical-Based Subject-Specific Model of In-Vivo Knee Joint 3D Kinematics from Medical Imaging. Appl. Sci. 2020, 10, 2100. [Google Scholar] [CrossRef] [Green Version]
- Flood, P.D.L.; Banks, S.A. Automated Registration of 3-D Knee Implant Models to Fluoroscopic Images Using Lipschitzian Optimization. IEEE Trans. Med. Imaging 2018, 37, 326–335. [Google Scholar] [CrossRef]
- Markelj, P.; Tomaževič, D.; Likar, B.; Pernuš, F. A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 2012, 16, 642–661. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lu, T.-W.; Li, J.-D.; Kuo, M.-Y.; Kuo, C.-C.; Hsu, H.-C. An automated three-dimensional bone pose tracking method using clinical interleaved biplane fluoroscopy systems: Application to the knee. Appl. Sci. 2020, 10, 8426. [Google Scholar] [CrossRef]
- Lin, C.-C.; Li, J.-D.; Lu, T.-W.; Kuo, M.-Y.; Kuo, C.-C.; Hsu, H.-C. A model-based tracking method for measuring 3D dynamic joint motion using an alternating biplane x-ray imaging system. Med. Phys. 2018, 45, 3637–3649. [Google Scholar] [CrossRef] [PubMed]
- Barré, A.; Aminian, K. Error performances of a model-based biplane fluoroscopic system for tracking knee prosthesis during treadmill gait task. Med. Biol. Eng. Comput. 2018, 56, 307–316. [Google Scholar] [CrossRef]
- Guan, S.; Gray, H.A.; Keynejad, F.; Pandy, M.G. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait. IEEE Trans. Med. Imaging 2016, 35, 326–336. [Google Scholar] [CrossRef]
- Ivester, J.C.; Cyr, A.J.; Harris, M.D.; Kulis, M.J.; Rullkoetter, P.J.; Shelburne, K.B. A Reconfigurable High-Speed Stereo-Radiography System for Sub-Millimeter Measurement of In Vivo Joint Kinematics. J. Med. Devices 2015, 9, 041009. [Google Scholar] [CrossRef]
- Postolka, B.; List, R.; Thelen, B.; Schütz, P.; Taylor, W.R.; Zheng, G. Evaluation of an intensity-based algorithm for 2D/3D registration of natural knee videofluoroscopy data. Med. Eng. Phys. 2020, 77, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.L.; Ellingson, A.M.; Ludewig, P.M. Validation of single-plane fluoroscopy and 2D/3D shape-matching for quantifying shoulder complex kinematics. Med. Eng. Phys. 2018, 52, 69–75. [Google Scholar] [CrossRef]
- Ellingson, A.M.; Mozingo, J.D.; Magnuson, D.J.; Pagnano, M.W.; Zhao, K.D. Characterizing fluoroscopy based kinematic accuracy as a function of pulse width and velocity. J. Biomech. 2016, 49, 3741–3745. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.Y.; Lu, T.W.; Chen, C.M.; Kuo, M.Y.; Hsu, H.C. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Med. Phys. 2010, 37, 1273–1284. [Google Scholar] [CrossRef]
- Penney, G.P.; Weese, J.; Little, J.A.; Desmedt, P.; Hill, D.L.G.; Hawkes, D.J. A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans. Med. Imaging 1998, 17, 586–595. [Google Scholar] [CrossRef]
- Prins, A.H.; Kaptein, B.L.; Stoel, B.C.; Reiber, J.H.C.; Valstar, E.R. Detecting femur–insert collisions to improve precision of fluoroscopic knee arthroplasty analysis. J. Biomech. 2010, 43, 694–700. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lu, T.-W.; Shih, T.-F.; Tsai, T.-Y.; Wang, T.-M.; Hsu, S.-J. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion. Med. Phys. 2013, 40, 031912. [Google Scholar] [CrossRef]
- El Habachi, A.; Moissenet, F.; Duprey, S.; Cheze, L.; Dumas, R. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Med. Biol. Eng. Comput. 2015, 53, 655–667. [Google Scholar] [CrossRef]
- Rachmat, H.H.; Janssen, D.; Zevenbergen, W.J.; Verkerke, G.J.; Diercks, R.L.; Verdonschot, N. Generating finite element models of the knee: How accurately can we determine ligament attachment sites from MRI scans? Med. Eng. Phys. 2014, 36, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Bergamini, E.; Pillet, H.; Hausselle, J.; Thoreux, P.; Guerard, S.; Camomilla, V.; Cappozzo, A.; Skalli, W. Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization. Gait Posture 2011, 33, 706–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillet, H.; Bergamini, E.; Rochcongar, G.; Camomilla, V.; Thoreux, P.; Rouch, P.; Cappozzo, A.; Skalli, W. Femur, tibia and fibula bone templates to estimate subject-specific knee ligament attachment site locations. J. Biomech. 2016, 49, 3523–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, D.L.; Rainbow, M.J.; Leventhal, E.L.; Crisco, J.J.; Fleming, B.C. Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J. Biomech. 2010, 43, 1623–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.-Y.; Li, J.-S.; Wang, S.; Li, P.; Kwon, Y.-M.; Li, G. Principal component analysis in construction of 3D human knee joint models using a statistical shape model method. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baka, N.; Kaptein, B.L.; de Bruijne, M.; van Walsum, T.; Giphart, J.E.; Niessen, W.J.; Lelieveldt, B.P.F. 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Med. Image Anal. 2011, 15, 840–850. [Google Scholar] [CrossRef]
- Myronenko, A.; Song, X. Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Gower, J.C. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- Brent, R.P. Algorithms for Minimization without Derivatives; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Nasab, S.H.; List, R.; Oberhofer, K.; Fucentese, S.F.; Snedeker, J.G.; Taylor, W.R. Loading patterns of the posterior cruciate ligament in the healthy knee: A systematic review. PLoS ONE 2016, 11, e0167106. [Google Scholar] [CrossRef] [PubMed]
- Kernkamp, W.A.; Varady, N.H.; Li, J.-S.; Tsai, T.-Y.; Asnis, P.D.; van Arkel, E.R.; Nelissen, R.G.; Gill, T.J.; Van de Velde, S.K.; Li, G. An in vivo prediction of anisometry and strain in anterior cruciate ligament reconstruction–A combined magnetic resonance and dual fluoroscopic imaging analysis. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Johal, P.; Williams, A.; Wragg, P.; Hunt, D.; Gedroyc, W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’MRI. J. Biomech. 2005, 38, 269–276. [Google Scholar] [PubMed]
- Ho, W.-P.; Cheng, C.-K.; Liau, J.-J. Morphometrical measurements of resected surface of femurs in Chinese knees: Correlation to the sizing of current femoral implants. Knee 2006, 13, 12–14. [Google Scholar] [CrossRef]
- Kuo, C.C.; Lu, H.L.; Leardini, A.; Lu, T.W.; Kuo, M.Y.; Hsu, H.C. Three-dimensional computer graphics-based ankle morphometry with computerized tomography for total ankle replacement design and positioning. Clin. Anat. 2014, 27, 659–668. [Google Scholar] [CrossRef]
Methods | Flex/Ext | Add/Abd | I/E Rotation | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | ||||||||||
SbMBT | 0.7 | ±0.3 | 0.2 | ±0.2 | 0.8 | ±0.4 | 0.9993 | 1.4 | ±0.5 | 0.7 | ±1.2 | 1.5 | ±0.4 | 0.3038 | 1.0 | ±0.7 | −0.8 | ±0.9 | 0.9 | ±0.5 | 0.9832 |
MbMBT | 0.7 | ±0.3 | 0.2 | ±0.2 | 0.8 | ±0.4 | 0.9993 | 1.4 | ±0.6 | 0.5 | ±1.2 * | 1.3 | ±0.6 | 0.3425 | 1.0 | ±0.7 | −0.8 | ±0.9 | 0.8 | ±0.3 | 0.9861 |
A/P Translation | P/D Translation | L/M Translation | |||||||||||||||||||
MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | ||||||||||
SbMBT | 1.7 | ±0.8 | 0.6 | ±0.4 | 1.9 | ±0.9 | 0.8484 | 1.2 | ±0.4 | −0.4 | ±0.7 | 1.4 | ±0.5 | 0.4177 | 3.2 | ±1.2 | 0.5 | ±1.1 | 3.6 | ±1.4 | 0.4547 |
MbMBT | 0.8 | ±0.4 * | 0.3 | ±0.8 | 0.6 | ±0.3 * | 0.9609 | 0.7 | ±0.3 | 0.1 | ±0.7 | 0.4 | ±0.2 * | 0.7037 | 1.6 | ±0.5 * | 1.2 | ±1.0 | 1.1 | ±0.3 * | 0.5971 |
Methods | Flex/Ext | Add/Abd | I/E Rotation | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | ||||||||||
SbMBT | 0.3 | ±0.1 | −0.2 | ±0.2 | 0.2 | ±0.1 | 0.9997 | 0.4 | ±0.2 | −0.2 | ±0.3 | 0.4 | ±0.2 | 0.8990 | 0.6 | ±0.3 | −0.5 | ±0.5 | 0.6 | ±0.1 | 0.9891 |
MbMBT | 0.2 | ±0.1 | −0.1 | ±0.2 | 0.2 | ±0.1 | 0.9998 | 0.3 | ±0.1 * | −0.2 | ±0.3 | 0.3 | ±0.1 * | 0.9533 | 0.6 | ±0.3 | −0.4 | ±0.4 | 0.4 | ±0.1 | 0.9928 |
A/P Translation | P/D Translation | L/M Translation | |||||||||||||||||||
MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | ||||||||||
SbMBT | 0.5 | ±0.2 | 0.0 | ±0.2 | 0.6 | ±0.3 | 0.98089 | 0.4 | ±0.1 | 0.1 | ±0.2 | 0.4 | ±0.2 | 0.83126 | 2.7 | ±0.3 | −0.8 | ±0.7 | 3.2 | ±0.6 | 0.0447 |
MbMBT | 0.3 | ±0.3 | 0.2 | ±0.3 | 0.2 | ±0.1 * | 0.99454 | 0.3 | ±0.2 | 0.3 | ±0.3 | 0.1 | ±0.1 * | 0.94964 | 1.5 | ±0.7 * | 1.1 | ±1.3 | 0.6 | ±0.3 * | 0.3140 |
Methods | Flex/Ext | Add/Abd | I/E Rotation | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | ||||||||||
SbMBT | 0.6 | ±0.2 | −0.3 | ±0.3 | 0.7 | ±0.2 | 0.9995 | 0.6 | ±0.1 | −0.2 | ±0.4 | 0.6 | ±0.2 | 0.8712 | 1.3 | ±0.6 | −0.8 | ±0.5 | 1.3 | ±0.4 | 0.9823 |
MbMBT | 0.5 | ±0.2 | −0.3 | ±0.3 | 0.5 | ±0.2 * | 0.9998 | 0.5 | ±0.2 | −0.4 | ±0.3 * | 0.4 | ±0.1 * | 0.9296 | 1.1 | ±0.6 * | −0.7 | ±0.5 | 1.0 | ±0.4 * | 0.9880 |
A/P Translation | P/D Translation | L/M Translation | |||||||||||||||||||
MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | MAD | Bias | Precision | R2 | ||||||||||
SbMBT | 1.9 | ±0.9 | 0.6 | ±1.4 | 1.8 | ±0.6 | 0.8638 | 0.6 | ±0.2 | −0.3 | ±0.3 | 0.6 | ±0.1 | 0.8862 | 3.0 | ±1.1 | 1.0 | ±1.9 | 2.9 | ±1.0 | 0.3066 |
MbMBT | 1.0 | ±0.4 * | 0.5 | ±0.7 | 0.8 | ±0.3 * | 0.9751 | 0.3 | ±0.2 * | 0.3 | ±0.2 * | 0.2 | ±0.1 * | 0.9732 | 1.4 | ±0.8 * | 1.0 | ±1.1 | 1.0 | ±0.3 * | 0.3221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-C.; Lu, H.-L.; Lu, T.-W.; Wang, C.-Y.; Li, J.-D.; Kuo, M.-Y.; Hsu, H.-C. Reconstruction of Three-Dimensional Tibiofemoral Kinematics Using Single-Plane Fluoroscopy and a Personalized Kinematic Model. Appl. Sci. 2021, 11, 9415. https://doi.org/10.3390/app11209415
Lin C-C, Lu H-L, Lu T-W, Wang C-Y, Li J-D, Kuo M-Y, Hsu H-C. Reconstruction of Three-Dimensional Tibiofemoral Kinematics Using Single-Plane Fluoroscopy and a Personalized Kinematic Model. Applied Sciences. 2021; 11(20):9415. https://doi.org/10.3390/app11209415
Chicago/Turabian StyleLin, Cheng-Chung, Hsuan-Lun Lu, Tung-Wu Lu, Chia-Yang Wang, Jia-Da Li, Mei-Ying Kuo, and Horng-Chuang Hsu. 2021. "Reconstruction of Three-Dimensional Tibiofemoral Kinematics Using Single-Plane Fluoroscopy and a Personalized Kinematic Model" Applied Sciences 11, no. 20: 9415. https://doi.org/10.3390/app11209415
APA StyleLin, C.-C., Lu, H.-L., Lu, T.-W., Wang, C.-Y., Li, J.-D., Kuo, M.-Y., & Hsu, H.-C. (2021). Reconstruction of Three-Dimensional Tibiofemoral Kinematics Using Single-Plane Fluoroscopy and a Personalized Kinematic Model. Applied Sciences, 11(20), 9415. https://doi.org/10.3390/app11209415