Photon-In/Photon-Out X-ray Free-Electron Laser Studies of Radiolysis
Abstract
:1. Introduction
2. Methods
2.1. Optical-Pump/X-ray Probe
2.2. X-ray Pump/X-ray Probe
2.3. Chemical Stage Methods
3. Discussion and Applications
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alizadeh, E.; Sanche, L. Precursors of Solvated Electrons in Radiobiological Physics and Chemistry. Chem. Rev. 2012, 112, 5578–5602. [Google Scholar] [CrossRef] [PubMed]
- Garrett, B.C.; Dixon, D.A.; Camaioni, D.M.; Chipman, D.M.; Johnson, M.A.; Jonah, C.D.; Kimmel, G.A.; Miller, J.H.; Rescigno, T.N.; Rossky, P.J.; et al. Role of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific Advances. Chem. Rev. 2005, 105, 355–390. [Google Scholar] [CrossRef] [PubMed]
- Hart, E.J.; Boag, J.W. Absorption Spectrum of the Hydrated Electron in Water and in Aqueous Solutions. J. Am. Chem. Soc. 1962, 84, 4090–4095. [Google Scholar] [CrossRef]
- Herbert, J.M.; Coons, M.P. The Hydrated Electron. Annu. Rev. Phys. Chem. 2017, 68, 447–472. [Google Scholar] [CrossRef] [Green Version]
- Loh, Z.H.; Doumy, G.; Arnold, C.; Kjellsson, L.; Southworth, S.H.; Al Haddad, A.; Kumagai, Y.; Tu, M.F.; Ho, P.J.; March, A.M.; et al. Observation of the fastest chemical processes in the radiolysis of water. Science 2020, 367, 179–182. [Google Scholar] [CrossRef]
- Kjellsson, L.; Nanda, K.D.; Rubensson, J.E.; Doumy, G.; Southworth, S.H.; Ho, P.J.; March, A.M.; Al Haddad, A.; Kumagai, Y.; Tu, M.F.; et al. Resonant Inelastic X-ray Scattering Reveals Hidden Local Transitions of the Aqueous OH Radical. Phys. Rev. Lett. 2020, 124, 236001. [Google Scholar] [CrossRef]
- Cederbaum, L.S.; Zobeley, J.; Tarantelli, F. Giant Intermolecular Decay and Fragmentation of Clusters. Phys. Rev. Lett. 1997, 79, 4778–4781. [Google Scholar] [CrossRef]
- Jahnke, T.; Czasch, A.; Schöffler, M.S.; Schössler, S.; Knapp, A.; Käsz, M.; Titze, J.; Wimmer, C.; Kreidi, K.; Grisenti, R.E.; et al. Experimental Observation of Interatomic Coulombic Decay in Neon Dimers. Phys. Rev. Lett. 2004, 93, 163401. [Google Scholar] [CrossRef]
- Mucke, M.; Braune, M.; Barth, S.; Förstel, M.; Lischke, T.; Ulrich, V.; Arion, T.; Becker, U.; Bradshaw, A.; Hergenhahn, U. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 2010, 6, 143–146. [Google Scholar] [CrossRef]
- Richter, C.; Hollas, D.; Saak, C.M.; Förstel, M.; Miteva, T.; Mucke, M.; Björneholm, O.; Sisourat, N.; Slavíček, P.; Hergenhahn, U. Competition between proton transfer and intermolecular Coulombic decay in water. Nat. Commun. 2018, 9, 4988. [Google Scholar] [CrossRef] [Green Version]
- Aziz, E.F.; Ottosson, N.; Faubel, M.; Hertel, I.V.; Winter, B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 2008, 455, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Thürmer, S.; Ončák, M.; Ottosson, N.; Seidel, R.; Hergenhahn, U.; Bradforth, S.E.; Slavíček, P.; Winter, B. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 2013, 5, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Slavíček, P.; Winter, B.; Cederbaum, L.S.; Kryzhevoi, N.V. Proton-Transfer Mediated Enhancement of Nonlocal Electronic Relaxation Processes in X-ray Irradiated Liquid Water. J. Am. Chem. Soc. 2014, 136, 18170–18176. [Google Scholar] [CrossRef]
- Grieves, G.A.; Orlando, T.M. Intermolecular Coulomb Decay at Weakly Coupled Heterogeneous Interfaces. Phys. Rev. Lett. 2011, 107, 016104. [Google Scholar] [CrossRef] [Green Version]
- Slavíček, P.; Kryzhevoi, N.V.; Aziz, E.F.; Winter, B. Relaxation Processes in Aqueous Systems upon X-ray Ionization: Entanglement of Electronic and Nuclear Dynamics. J. Phys. Chem. Lett. 2016, 7, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Coe, J.V.; Lee, G.H.; Eaton, J.G.; Arnold, S.T.; Sarkas, H.W.; Bowen, K.H.; Ludewigt, C.; Haberland, H.; Worsnop, D.R. Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)−n=2–69. J. Chem. Phys. 1990, 92, 3980–3982. [Google Scholar] [CrossRef]
- Bragg, A.E.; Verlet, J.R.R.; Kammrath, A.; Cheshnovsky, O.; Neumark, D.M. Hydrated Electron Dynamics: From Clusters to Bulk. Science 2004, 306, 669–671. [Google Scholar] [CrossRef] [Green Version]
- Coe, J.V.; Williams, S.M.; Bowen, K.H. Photoelectron spectra of hydrated electron clusters vs. cluster size: Connecting to bulk. Int. Rev. Phys. Chem. 2008, 27, 27–51. [Google Scholar] [CrossRef]
- Svoboda, V.; Michiels, R.; LaForge, A.C.; Med, J.; Stienkemeier, F.; Slavíček, P.; Wörner, H.J. Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- LaForge, A.C.; Michiels, R.; Bohlen, M.; Callegari, C.; Clark, A.; von Conta, A.; Coreno, M.; Di Fraia, M.; Drabbels, M.; Huppert, M.; et al. Real-Time Dynamics of the Formation of Hydrated Electrons upon Irradiation of Water Clusters with Extreme Ultraviolet Light. Phys. Rev. Lett. 2019, 122, 133001. [Google Scholar] [CrossRef] [Green Version]
- Winter, B.; Faubel, M.; Hertel, I.V.; Pettenkofer, C.; Bradforth, S.E.; Jagoda-Cwiklik, B.; Cwiklik, L.; Jungwirth, P. Electron Binding Energies of Hydrated H3O+ and OH- : Photoelectron Spectroscopy of Aqueous Acid and Base Solutions Combined with Electronic Structure Calculations. J. Am. Chem. Soc. 2006, 128, 3864–3865. [Google Scholar] [CrossRef]
- Suzuki, T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem. 2012, 31, 265–318. [Google Scholar] [CrossRef]
- Elkins, M.H.; Williams, H.L.; Shreve, A.T.; Neumark, D.M. Relaxation Mechanism of the Hydrated Electron. Science 2013, 342, 1496–1499. [Google Scholar] [CrossRef] [PubMed]
- Karashima, S.; Yamamoto, Y.i.; Suzuki, T. Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy. Phys. Rev. Lett. 2016, 116, 137601. [Google Scholar] [CrossRef] [PubMed]
- Koralek, J.D.; Kim, J.B.; Brůža, P.; Curry, C.B.; Chen, Z.; Bechtel, H.A.; Cordones, A.A.; Sperling, P.; Toleikis, S.; Kern, J.F.; et al. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 2018, 9, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, B.; DePonte, D.P.; Santiago, J.G. Device design and flow scaling for liquid sheet jets. Phys. Rev. Fluids 2018, 3, 114202. [Google Scholar] [CrossRef]
- Kraus, P.M.; Zürch, M.; Cushing, S.K.; Neumark, D.M.; Leone, S.R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2018, 2, 82–94. [Google Scholar] [CrossRef]
- Pertot, Y.; Schmidt, C.; Matthews, M.; Chauvet, A.; Huppert, M.; Svoboda, V.; von Conta, A.; Tehlar, A.; Baykusheva, D.; Wolf, J.P.; et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source. Science 2017, 355, 264–267. [Google Scholar] [CrossRef] [Green Version]
- Teichmann, S.M.; Silva, F.; Cousin, S.L.; Hemmer, M.; Biegert, J. 0.5-keV Soft X-ray attosecond continua. Nat. Commun. 2016, 7, 11493. [Google Scholar] [CrossRef] [Green Version]
- La Cäer, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 2011, 3, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Long, F.H.; Lu, H.; Eisenthal, K.B. Femtosecond studies of the presolvated electron: An excited state of the solvated electron? Phys. Rev. Lett. 1990, 64, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Migus, A.; Gauduel, Y.; Martin, J.L.; Antonetti, A. Excess electrons in liquid water: First evidence of a prehydrated state with femtosecond lifetime. Phys. Rev. Lett. 1987, 58, 1559–1562. [Google Scholar] [CrossRef] [PubMed]
- Crowell, R.A.; Bartels, D.M. Multiphoton Ionization of Liquid Water with 3.0–5.0 eV Photons. J. Phys. Chem. 1996, 100, 17940–17949. [Google Scholar] [CrossRef]
- Elles, C.G.; Jailaubekov, A.E.; Crowell, R.A.; Bradforth, S.E. Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV. J. Chem. Phys. 2006, 125, 044515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.; Walhout, P.K.; Yokoyama, K.; Barbara, P.F. Femtosecond Solvation Dynamics of the Hydrated Electron. Phys. Rev. Lett. 1998, 80, 1086–1089. [Google Scholar] [CrossRef]
- Pshenichnikov, M.S.; Baltuška, A.; Wiersma, D.A. Hydrated-electron population dynamics. Chem. Phys. Lett. 2004, 389, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Marsalek, O.; Elles, C.G.; Pieniazek, P.A.; Pluhařová, E.; VandeVondele, J.; Bradforth, S.E.; Jungwirth, P. Chasing charge localization and chemical reactivity following photoionization in liquid water. J. Chem. Phys. 2011, 135, 224510. [Google Scholar] [CrossRef] [Green Version]
- Young, L.; Arms, D.A.; Dufresne, E.M.; Dunford, R.W.; Ederer, D.L.; Höhr, C.; Kanter, E.P.; Krässig, B.; Landahl, E.C.; Peterson, E.R.; et al. X-ray Microprobe of Orbital Alignment in Strong-Field Ionized Atoms. Phys. Rev. Lett. 2006, 97, 083601. [Google Scholar] [CrossRef] [Green Version]
- Goulielmakis, E.; Loh, Z.H.; Wirth, A.; Santra, R.; Rohringer, N.; Yakovlev, V.S.; Zherebtsov, S.; Pfeifer, T.; Azzeer, A.M.; Kling, M.F.; et al. Real-time observation of valence electron motion. Nature 2010, 466, 739–743. [Google Scholar] [CrossRef]
- Vidal, M.L.; Feng, X.; Epifanovsky, E.; Krylov, A.I.; Coriani, S. New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States. J. Chem. Theory Comput. 2019, 15, 3117–3133. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Nie, Z.; Zheng, Y.Y.; Dong, S.; Loh, Z.H. Elementary Electron and Ion Dynamics in Ionized Liquid Water. J. Phys. Chem. Lett. 2013, 4, 3698–3703. [Google Scholar] [CrossRef]
- Nagasaka, M.; Hatsui, T.; Horigome, T.; Hamamura, Y.; Kosugi, N. Development of a liquid flow cell to measure soft X-ray absorption in transmission mode: A test for liquid water. J. Electron. Spectrosc. Relat. Phenom. 2010, 177, 130–134. [Google Scholar] [CrossRef]
- Winter, B.; Weber, R.; Widdra, W.; Dittmar, M.; Faubel, M.; Hertel, I.V. Full Valence Band Photoemission from Liquid Water Using EUV Synchrotron Radiation. J. Phys. Chem. A 2004, 108, 2625–2632. [Google Scholar] [CrossRef]
- Li, Z.; El-Amine Madjet, M.; Vendrell, O.; Santra, R. Core-level transient absorption spectroscopy as a probe of electron hole relaxation in photoionized H+(H2O)n. Faraday Discuss. 2014, 171, 457–470. [Google Scholar] [CrossRef]
- Lutman, A.A.; Coffee, R.; Ding, Y.; Huang, Z.; Krzywinski, J.; Maxwell, T.; Messerschmidt, M.; Nuhn, H.D. Experimental Demonstration of Femtosecond Two-Color X-ray Free-Electron Lasers. Phys. Rev. Lett. 2013, 110, 134801. [Google Scholar] [CrossRef]
- Lutman, A.A.; Maxwell, T.J.; MacArthur, J.P.; Guetg, M.W.; Berrah, N.; Coffee, R.N.; Ding, Y.; Huang, Z.; Marinelli, A.; Moeller, S.; et al. Fresh-slice multicolour X-ray free-electron lasers. Nat. Photonics 2016, 10, 745–750. [Google Scholar] [CrossRef]
- Duris, J.; Li, S.; Driver, T.; Champenois, E.G.; MacArthur, J.P.; Lutman, A.A.; Zhang, Z.; Rosenberger, P.; Aldrich, J.W.; Coffee, R.; et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 2020, 14, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Emma, P.; Bane, K.; Cornacchia, M.; Huang, Z.; Schlarb, H.; Stupakov, G.; Walz, D. Femtosecond and Subfemtosecond X-ray Pulses from a Self-Amplified Spontaneous-Emission–Based Free-Electron Laser. Phys. Rev. Lett. 2004, 92, 074801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, Y.D.; Shao, Y.C.; Cruz, A.; Hanzel, K.; Brown, A.; Frano, A.; Qiao, R.; Smith, B.; Domning, E.; Huang, S.W.; et al. Modular soft X-ray spectrometer for applications in energy sciences and quantum materials. Rev. Sci. Instrum. 2017, 88, 013110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimann, P.; Reid, A.; Feng, Y.; Fritz, D. Fluorescence intensity monitors as intensity and beam-position diagnostics for X-ray free-electron lasers. J. Synchrotron Radiat. 2019, 26, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Curie, P.; Debierne, A. Sur la radio-activité induite et les gaz activés par le radium. Compt. Rend 1901, 132, 768–770. [Google Scholar]
- Keene, J.P. Kinetics of Radiation-induced Chemical Reactions. Nature 1960, 188, 843–844. [Google Scholar] [CrossRef]
- Matheson, M.S.; Dorfman, L.M. Detection of Short-Lived Transients in Radiation Chemistry. J. Chem. Phys. 1960, 32, 1870–1871. [Google Scholar] [CrossRef]
- McCarthy, R.; MacLachlan, A. Transient benzyl radical reactions produced by high-energy radiation. Trans. Faraday Soc. 1960, 56, 1187–1200. [Google Scholar] [CrossRef]
- Belloni, J.; Monard, H.; Gobert, F.; Larbre, J.P.; Demarque, A.; De Waele, V.; Lampre, I.; Marignier, J.L.; Mostafavi, M.; Bourdon, J.C.; et al. ELYSE—A picosecond electron accelerator for pulse radiolysis research. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 2005, 539, 527–539. [Google Scholar] [CrossRef]
- Wishart, J.F.; Cook, A.R.; Miller, J.R. The LEAF picosecond pulse radiolysis facility at Brookhaven National Laboratory. Rev. Sci. Instrum. 2004, 75, 4359–4366. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.B.; Buchanan, M.; Wilmarth, B. Basic Research Needs for Environmental Management; Technical Report; PNNL-25166; DOE: Washington, DC, USA, 2016. [Google Scholar]
- Peterson, R.A.; Buck, E.C.; Chun, J.; Daniel, R.C.; Herting, D.L.; Ilton, E.S.; Lumetta, G.J.; Clark, S.B. Review of the scientific understanding of radioactive waste at the US DOE Hanford Site. Environ. Sci. Technol. 2018, 52, 381–396. [Google Scholar] [CrossRef]
- Colburn, H.A.; Peterson, R.A. A history of Hanford tank waste, implications for waste treatment, and disposal. Environ. Prog. Sustain. Energy 2020, 40, e13567. [Google Scholar]
- Kruger, A.A.; Vienna, J.D.; Kim, D.S. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant; Technical Report; Hanford Site (HNF): Richland, WA, USA, 2015. [Google Scholar]
- Page, J.S.; Reynolds, J.G.; Cooke, G.A.; Wells, B.E. Large cemented gibbsite agglomerates in alkaline nuclear waste at the Hanford site and the impacts to remediation. J. Hazard. Mater. 2020, 384, 121318. [Google Scholar] [CrossRef]
- Gephart, R.E. A short history of waste management at the Hanford Site. Phys. Chem. Earth Parts A/B/C 2010, 35, 298–306. [Google Scholar] [CrossRef]
- Gephart, R.E.; Lundgren, R.E. Hanford Tank Clean Up: A Guide to Understanding the Technical Issues; Technical Report; Pacific Northwest Lab.: Richland, WA, USA, 1995. [Google Scholar]
- Pimblott, S.M.; LaVerne, J.A.; Mozumder, A.; Green, N.J. Structure of electron tracks in water. 1. Distribution of energy deposition events. J. Phys. Chem. 1990, 94, 488–495. [Google Scholar] [CrossRef]
- Pimblott, S.M.; LaVerne, J.A. Stochastic simulation of the electron radiolysis of water and aqueous solutions. J. Phys. Chem. A 1997, 101, 5828–5838. [Google Scholar] [CrossRef]
- PNNL: Tank Waste Information Network System; Best Basis Inventory. 2020. Available online: https://twins.labworks.org/twinsdata/forms/about.aspx?subject=BestBasisInventory (accessed on 6 April 2020.).
- Graham, T.R.; Dembowski, M.; Hu, J.Z.; Jaegers, N.R.; Zhang, X.; Clark, S.B.; Pearce, C.I.; Rosso, K.M. Intermediate Species in the Crystallization of Sodium Aluminate Hydroxy Hydrates. J. Phys. Chem. C 2020, 124, 12337–12345. [Google Scholar] [CrossRef]
- Graham, T.R.; Gorniak, R.; Dembowski, M.; Zhang, X.; Clark, S.B.; Pearce, C.I.; Clark, A.E.; Rosso, K.M. Solid-State Recrystallization Pathways of Sodium Aluminate Hydroxy Hydrates. Inorg. Chem. 2020, 59, 6857–6865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, S.; Du, H.; Wang, S.; Zhang, Y. Solubility of Al2O3 in the Na2O-Al2O3-H2O-CH3OH System at (30 and 60) ∘C. J. Chem. Eng. Data 2010, 55, 1237–1240. [Google Scholar] [CrossRef]
- Pimblott, S.M.; LaVerne, J.A.; Bartels, D.M.; Jonah, C.D. Reconciliation of transient absorption and chemically scavenged yields of the hydrated electron in radiolysis. J. Phys. Chem. 1996, 100, 9412–9415. [Google Scholar] [CrossRef]
- Jones, B.M.; Hu, H.; Alexsandrov, A.; Smith, W.; Clark, A.E.; Li, X.; Orlando, T.M. Efficient Intermolecular Energy Exchange and Soft Ionization of Water at Nanoplatelet Interfaces. J. Phys. Chem. Lett. 2020, 11, 10088–10093. [Google Scholar] [CrossRef]
- Stumpf, V.; Brunken, C.; Gokhberg, K. Impact of metal ion’s charge on the interatomic Coulombic decay widths in microsolvated clusters. J. Chem. Phys. 2016, 145, 104306. [Google Scholar] [CrossRef]
- Norman, P.; Dreuw, A. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Chem. Rev. 2018, 118, 7208–7248. [Google Scholar] [CrossRef]
- Besley, N.A. Density Functional Theory Based Methods for the Calculation of X-ray Spectroscopy. Accounts Chem. Res. 2020, 53, 1306–1315. [Google Scholar] [CrossRef]
- Sorensen, S.L.; Zheng, X.; Southworth, S.H.; Patanen, M.; Kokkonen, E.; Oostenrijk, B.; Travnikova, O.; Marchenko, T.; Simon, M.; Bostedt, C.; et al. From synchrotrons for XFELs: The soft X-ray near-edge spectrum of the ESCA molecule. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 244011. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, J.; Doumy, G.; Young, L.; Cheng, L. Hetero-site Double Core Ionization Energies with Sub-electronvolt Accuracy from Delta-Coupled-Cluster Calculations. J. Phys. Chem. A 2020, 124, 4413–4426. [Google Scholar] [CrossRef] [PubMed]
- Stanton, J.F.; Bartlett, R.J. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 1993, 98, 7029–7039. [Google Scholar] [CrossRef]
- Krylov, A.I. Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Electronically Excited Species: The Hitchhiker’s Guide to Fock Space. Annu. Rev. Phys. Chem. 2008, 59, 433–462. [Google Scholar] [CrossRef] [Green Version]
- Cederbaum, L.S.; Domcke, W.; Schirmer, J. Many-body theory of core holes. Phys. Rev. A 1980, 22, 206–222. [Google Scholar] [CrossRef]
- Coriani, S.; Koch, H. Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. J. Chem. Phys. 2015, 143, 181103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Cheng, L. Performance of Delta-Coupled-Cluster Methods for Calculations of Core-Ionization Energies of First-Row Elements. J. Chem. Theory Comput. 2019, 15, 4945–4955. [Google Scholar] [CrossRef] [PubMed]
- Nanda, K.D.; Vidal, M.L.; Faber, R.; Coriani, S.; Krylov, A.I. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Phys. Chem. Chem. Phys. 2020, 22, 2629–2641. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Inhester, L.; Hanasaki, K.; Son, S.K.; Santra, R. Efficient electronic structure calculation for molecular ionization dynamics at high X-ray intensity. Struct. Dyn. 2015, 2, 041707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, P.J.; Daurer, B.J.; Hantke, M.F.; Bielecki, J.; Al Haddad, A.; Bucher, M.; Doumy, G.; Ferguson, K.R.; Flückiger, L.; Gorkhover, T.; et al. The role of transient resonances for ultra-fast imaging of single sucrose nanoclusters. Nat. Commun. 2020, 11, 167. [Google Scholar] [CrossRef]
- Serkez, S.; Decking, W.; Froehlich, L.; Gerasimova, N.; Grünert, J.; Guetg, M.; Huttula, M.; Karabekyan, S.; Koch, A.; Kocharyan, V.; et al. Opportunities for Two-Color Experiments in the Soft X-ray Regime at the European XFEL. Appl. Sci. 2020, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Reiche, S.; Knopp, G.; Pedrini, B.; Prat, E.; Aeppli, G.; Gerber, S. Towards the Perfect X-ray Beam Splitter. arXiv 2020, arXiv:physics.acc-ph/2010.00230. [Google Scholar]
- Engel, R.; Miedema, P.; Turenne, D.; Vaskivskyi, I.; Brenner, G.; Dziarzhytski, S.; Kuhlmann, M.; Schunck, J.; Döring, F.; Styervoyedov, A.; et al. Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-ray Free-Electron Laser. Appl. Sci. 2020, 10, 6947. [Google Scholar] [CrossRef]
- Schlotter, W.F.; Beye, M.; Zohar, S.; Coslovich, G.; Dakovski, G.L.; Lin, M.F.; Liu, Y.; Reid, A.; Stubbs, S.; Walter, P.; et al. Balanced Detection in Femtosecond X-ray Absorption Spectroscopy to Reach the Ultimate Sensitivity Limit. arXiv 2020, arXiv:physics.ins-det/2006.13968. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, L.; Nienhuis, E.T.; Koulentianos, D.; Doumy, G.; March, A.M.; Southworth, S.H.; Clark, S.B.; Orlando, T.M.; LaVerne, J.A.; Pearce, C.I. Photon-In/Photon-Out X-ray Free-Electron Laser Studies of Radiolysis. Appl. Sci. 2021, 11, 701. https://doi.org/10.3390/app11020701
Young L, Nienhuis ET, Koulentianos D, Doumy G, March AM, Southworth SH, Clark SB, Orlando TM, LaVerne JA, Pearce CI. Photon-In/Photon-Out X-ray Free-Electron Laser Studies of Radiolysis. Applied Sciences. 2021; 11(2):701. https://doi.org/10.3390/app11020701
Chicago/Turabian StyleYoung, Linda, Emily T. Nienhuis, Dimitris Koulentianos, Gilles Doumy, Anne Marie March, Stephen H. Southworth, Sue B. Clark, Thomas M. Orlando, Jay A. LaVerne, and Carolyn I. Pearce. 2021. "Photon-In/Photon-Out X-ray Free-Electron Laser Studies of Radiolysis" Applied Sciences 11, no. 2: 701. https://doi.org/10.3390/app11020701
APA StyleYoung, L., Nienhuis, E. T., Koulentianos, D., Doumy, G., March, A. M., Southworth, S. H., Clark, S. B., Orlando, T. M., LaVerne, J. A., & Pearce, C. I. (2021). Photon-In/Photon-Out X-ray Free-Electron Laser Studies of Radiolysis. Applied Sciences, 11(2), 701. https://doi.org/10.3390/app11020701