The Application of a Linear Microphone Array in the Quantitative Evaluation of the Blade Trailing-Edge Noise Reduction
Abstract
:1. Introduction
2. The Assessment of the Array Data Processing Software Using Sarradj’s Benchmark Synthesized Input Data
2.1. Results for Subcase A
2.2. Results for Subcase B
3. The Application of a Linear Array for the Identification of LE and TE Noise Source
3.1. Experimental Setup
3.2. LE and TE Noise Sources Identification
4. Study of the TE Noise Reduction with Serrated Treatment Using Linear Microphone Array
4.1. Serrated TE Configurations
4.2. Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gliebe, P.R. Observations on Fan Rotor Broadband Noise Characteristics. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference Proceedings, AIAA, Manchester, UK, 10–12 May 2004. [Google Scholar]
- Curle, N. The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 2006, 231, 505–514. [Google Scholar]
- Williams, J.E.F.; Hall, L.H. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 1970, 40, 657. [Google Scholar] [CrossRef]
- Crighton, D.G.; Leppington, F.G. Scattering of aerodynamic noise by a semi-infinite compliant plate. J. Fluid Mech. 1970, 43, 721–736. [Google Scholar] [CrossRef]
- Crighton, D.G. Radiation from vortex filament motion near a half plane. J. Fluid Mech. 1972, 51, 357–362. [Google Scholar] [CrossRef]
- Chandiramani, K.L. Diffraction of evanescent waves, with applications to aerodynamically scattered sound and radiation from unbaffled plates. J. Acoust. Soc. Am. 1974, 55, 19–29. [Google Scholar] [CrossRef]
- Levine, H. Acoustical Diffraction Radiation. J. Acoust. Soc. Am. 1972, 52, 1092. [Google Scholar] [CrossRef]
- Howe, M.S. The generation of sound by aerodynamic sources in an inhomogeneous steady flow. J. Fluid Mech. 1975, 67, 597–610. [Google Scholar] [CrossRef]
- Howe, M.S. The influence of vortex shedding on the generation of sound by convected turbulence. J. Fluid Mech. 1976, 76, 711–740. [Google Scholar] [CrossRef]
- Chase, D.M. Sound radiated by turbulent flow off a rigid half-plane as obtained from a wavevector spectrum of hydrodynamic pressure. J. Acoust. Soc. Am. 1972, 52, 1011–1023. [Google Scholar] [CrossRef]
- Chase, D. Noise radiated from an edge in turbulent flow according to a model of hydrodynamic pressure—Comparison with a jet-flow experiment. In Proceedings of the 7th Fluid and PlasmaDynamics Conference, Palo Alto, CA, USA, 17–19 June 1974; pp. 1041–1047. [Google Scholar]
- Davis, S.S. Theory of discrete vortex noise. AIAA J. 1975, 13, 375–380. [Google Scholar] [CrossRef]
- Howe, M. A review of the theory of trailing edge noise. J. Sound Vib. 1978, 61, 437–465. [Google Scholar] [CrossRef]
- Marcolini, M.; Brooks, T.; Pope, D. Airfoil Self-Noise and Prediction; NASA RP-1218; NASA: Washington, DC, USA, 1989. [Google Scholar]
- Brooks, T.; Hodgson, T. Trailing edge noise prediction from measured surface pressures. J. Sound Vib. 1981, 78, 69–117. [Google Scholar] [CrossRef]
- Amiet, R. Noise due to turbulent flow past a trailing edge. J. Sound Vib. 1976, 47, 387–393. [Google Scholar] [CrossRef]
- Amiet, R. A note on edge noise theories. J. Sound Vib. 1981, 78, 485–488. [Google Scholar] [CrossRef]
- Howe, M. Trailing edge noise at low mach numbers. J. Sound Vib. 1999, 225, 211–238. [Google Scholar] [CrossRef]
- Adams, H. Patent Application for a “Noiseless Device”. No. US2071012A, 22 February 1937. [Google Scholar]
- Graham, R. The silent flight of owls. Roy. Aero. Soc. J. 1934, 286, 837–843. [Google Scholar] [CrossRef]
- Lilley, G.M. A study of the silent flight of the owl. In Proceedings of the 4th AIAA/CEAS Aeroacoustics Conference, No.1998-2340, AIAA, Toulouse, France, 2–4 June 1998. [Google Scholar]
- Bohn, A. Edge noise attenuation by porous edge extensions. In Proceedings of the 14th AIAA Aerospace Sciences Meeting, No. 76-80, Washington, DC, USA, 26–28 January 1976. [Google Scholar]
- Khorrami, M.; Choudhari, M. Application of Passive Porous Treatment to Slat Trailing Edge Noise; NASA TM-212416; NASA: Washington, DC, USA, 2003. [Google Scholar]
- Sarradj, E.; Geyer, T. Noise generation by porous airfoils. In Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference, No. 2007-3719, Rome, Italy, 21–23 May 2007. [Google Scholar]
- Finez, A.; Jondeau, E.; Roger, M.; Jacob, M. Broadband noise reduction with trailingedge brushes. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference Proceedings, No. 2010-3980, Stockholm, Sweden, 7–9 June 2010. [Google Scholar]
- Howe, M.S. Aerodynamic noise of a serrated trailing edge. J. Fluid Struct. 1991, 5, 3–45. [Google Scholar] [CrossRef]
- Howe, M.S. Noise produced by a sawtooth trailing edge. J. Acoust. Soc. Am. 1991, 90, 482–487. [Google Scholar] [CrossRef]
- Oerlemans, S.; Fisher, M.; Maeder, T.; Kogler, K. Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. NLR-TP-2009-401. AIAA J. 2009, 47, 1470–1481. [Google Scholar] [CrossRef]
- Gruber, M.; Joseph, P.F.; Chong, T.P. Experimental Investigation of Airfoil Self Noise and Turbulent Wake Reduction by the Use of Trailing Edge Serrations. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference, No. 2010-3803, Stockholm, Sweden, 7–9 June 2010. [Google Scholar]
- Liang, J. Experimental and Numerical Study on Mechanism and Suppression Method of Turbo-Machinery Broadband Noise. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2016. [Google Scholar]
- Michel, U. History of acoustic beamforming. In Proceedings of the Berlin Beamforming Conference (BeBeC), Berlin, Germany, 21–22 November2006. [Google Scholar]
- Venkatesh, S.R.; Polak, D.R.; Narayanan, S. Beamforming algorithm for distributed source localization and its application to jet noise. AIAA J. 2003, 41, 1238–1246. [Google Scholar] [CrossRef]
- Lowis, C.; Joseph, P. A focused beamformer technique for separating rotor and stator-based broadband sources. In Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference, No. 2006-2710, Cambridge, CA, USA, 8–10 May 2006. [Google Scholar]
- Brooks, T.F.; Humphreys, W.M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays. J. Sound Vib. 2006, 294, 856–879. [Google Scholar] [CrossRef] [Green Version]
- Brooks, T.F.; Humphreys, W.M.; Plassman, G.E. DAMAS processing for a phased array study in the NASA Langley jet noise laboratory. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference, No. 2010-3780, Stockholm, Sweden, 7–9 June 2010. [Google Scholar]
- Sijtsma, P. CLEAN Based on Spatial Source Coherence. Int. J. Aeroacoustics 2007, 6, 357–374. [Google Scholar] [CrossRef]
- Sarradj, E.; Herold, G.; Sijtsma, P.; Martinez, R.M.; Geyer, T.F.; Bahr, C.J.; Porteous, R.; Moreau, D.; Doolan, C.J. A microphone array method benchmarking exercise using synthesized input data. In Proceedings of the 23rd Aiaa/ceas Aeroacoustics Conference, Aiaa Aviation Forum, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Hogbom, J.A. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. 1974, 15, 417–426. [Google Scholar]
- Sarradj, E. A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements. J. Sound Vib. 2010, 329, 1553–1569. [Google Scholar] [CrossRef]
- Aalgoezar, A.; Snellen, M.; Martinez, R.; Simons, D.G.; Sijtsma, P. On the use of global optimization methods for acoustic source mapping. J. Acoust. Soc. Am. 2017, 141, 453–465. [Google Scholar] [CrossRef]
- Qiao, W.Y.; Ji, L.; Tong, F.; Wang, L.F.; Chen, W.J. Separation and Quantification of Airfoil Le- and Te-Noise Source with Microphone Array. In Proceedings of the 2018 Berlin Beamforming Conference, BeBeC2018 D-14, Berlin, Germany, 5–8 March 2018. [Google Scholar]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Loiodice, S.; Drikakis, D.; Kokkalis, A. An efficient algorithm for the retarded time equation for noise from rotating sources. J. Sound Vib. 2018, 412, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Loiodice, S.; Drikakis, D.; Kokkalis, A. Emission surfaces and noise prediction from rotating sources. J. Sound Vib. 2018, 429, 245–264. [Google Scholar] [CrossRef]
- Ritos, K.; Drikakis, D.; Kokkinakis, I.W. Wall-pressure spectra models for supersonic and hypersonic turbulent boundary layers. J. Sound Vib. 2019, 443, 90–108. [Google Scholar] [CrossRef] [Green Version]
No. | Blade | λ (mm) | ||||
---|---|---|---|---|---|---|
0 | Baseline | 0 | 0 | - | - | - |
1 | H5λ3 | 5 | 0.033 | 3 | 0.02 | 1.2 |
2 | H10λ3 | 10 | 0.067 | 3 | 0.02 | 0.6 |
3 | H15λ3 | 15 | 0.100 | 3 | 0.02 | 0.4 |
4 | H20λ3 | 20 | 0.133 | 3 | 0.02 | 0.3 |
5 | H25λ3 | 25 | 0.167 | 3 | 0.02 | 0.24 |
6 | H30λ3 | 30 | 0.200 | 3 | 0.02 | 0.20 |
7 | H40λ3 | 40 | 0.267 | 3 | 0.02 | 0.15 |
8 | H30λ1.5 | 30 | 0.200 | 1.5 | 0.01 | 0.10 |
9 | H30λ5 | 30 | 0.200 | 5 | 0.03 | 0.33 |
10 | H30λ10 | 30 | 0.200 | 10 | 0.07 | 0.67 |
11 | H30λ15 | 30 | 0.200 | 15 | 0.10 | 1.00 |
12 | H30λ30 | 30 | 0.200 | 30 | 0.20 | 2.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Mao, L.; Xiang, K.; Tong, F.; Qiao, W. The Application of a Linear Microphone Array in the Quantitative Evaluation of the Blade Trailing-Edge Noise Reduction. Appl. Sci. 2021, 11, 572. https://doi.org/10.3390/app11020572
Chen W, Mao L, Xiang K, Tong F, Qiao W. The Application of a Linear Microphone Array in the Quantitative Evaluation of the Blade Trailing-Edge Noise Reduction. Applied Sciences. 2021; 11(2):572. https://doi.org/10.3390/app11020572
Chicago/Turabian StyleChen, Weijie, Luqin Mao, Kangshen Xiang, Fan Tong, and Weiyang Qiao. 2021. "The Application of a Linear Microphone Array in the Quantitative Evaluation of the Blade Trailing-Edge Noise Reduction" Applied Sciences 11, no. 2: 572. https://doi.org/10.3390/app11020572
APA StyleChen, W., Mao, L., Xiang, K., Tong, F., & Qiao, W. (2021). The Application of a Linear Microphone Array in the Quantitative Evaluation of the Blade Trailing-Edge Noise Reduction. Applied Sciences, 11(2), 572. https://doi.org/10.3390/app11020572