Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain
Abstract
1. Introduction
2. Data and Calculations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, S.; Bartels, J. Geomagnetism; Oxford University Press: New York, NY, USA, 1940. [Google Scholar]
- Campbell, W. The regular geomagnetic-field variations during quiet solar conditions. In Geomagnetism; Jacobs, J.A., Ed.; Elsevier: New York, NY, USA, 1989; Volume 3. [Google Scholar]
- Richmond, A.D. Modeling the ionsphere wind dynamo: A review. PAGEOPH 1989, 131, 413–435. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Maute, A. Sq and EEJ—A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev. 2017, 206, 299–405. [Google Scholar] [CrossRef]
- Hasegawa, M. Geomagnetic Sq current system. J. Geophys. Res. 1960, 65, 1437–1447. [Google Scholar] [CrossRef]
- Matsushita, S.; Xu, W. Equivalent ionospheric current systems representing solar daily variations of the polar geomagnetic field. J. Geophys. Res. 1982, 87, 8241–8254. [Google Scholar] [CrossRef]
- Chen, S.S.; Denardini, C.M.; Resende, L.C.A.; Chagas, R.A.J.; Moro, J.; da Silva, R.P.; Carmo, C.d.S.D.; Picanço, G.A.d.S. Evaluation of the Solar Quiet Reference Field (SQRF) model for space weather applications in the South America Magnetic Anomaly. Earth Planets Space 2021, 73, 61. [Google Scholar] [CrossRef]
- El Hawary, R.; Yumoto, K.; Yamazaki, Y.; Mahrous, A.; Ghamry, E.; Meloni, A.; Badi, K.; Kianji, G.; Uiso, C.B.S.; Mwiinga, N.; et al. Annual and semi-annual Sq variations at 96° MM MAGDAS I and II stations in Africa. Earth Planets Space 2012, 64, 425–432. [Google Scholar] [CrossRef][Green Version]
- Hibberd, F.H. The geomagnetic Sq variation—annual, semi-annual and solar cycle variations and ring current effects. J. Atmos. Terr. Phys. 1985, 47, 341–352. [Google Scholar] [CrossRef]
- Campbell, W. Annual and Semiannual Changes of the Quiet Daily Variations (Sq) in the Geomagnetic Field at North American Locations. J. Geophys. Res. 1982, 87, 785–796. [Google Scholar] [CrossRef]
- Di Mauro, D.; Regi, M.; Lepidi, S.; Del Corpo, A.; Dominici, G.; Bagiacchi, P.; Benedetti, G.; Cafarella, L. Geomagnetic Activity at Lampedusa Island: Characterization and Comparison with the Other Italian Observatories, Also in Response to Space Weather Events. Remote Sens. 2021, 13, 3111. [Google Scholar] [CrossRef]
- Patil, A.; Arora, B.R.; Rastogi, R.G. Seasonal variations in the intensity of Sq current system and its focus latitude over the Indian region. Indian J. Radio Space Phys. 1985, 14, 131–135. [Google Scholar]
- Stening, R. Variations in the strength of the Sq current system. Ann. Geophys. 1995, 13, 627–632. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Yumoto, K.; Uozumi, T.; Abe, S.; Cardinal, M.G.; McNamara, D.; Marshall, R.; Shevtsov, B.M.; Solovyev, S.I. Reexamination of the Sq-EEJ relationship based on extended magnetometer networks in the east Asian region. J. Geophys. Res. 2010, 115, A09319. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; et al. An empirical model of the quiet daily geomagnetic field variation. J. Geophys. Res. 2011, 116, A10312. [Google Scholar] [CrossRef]
- Matsushita, S. Seasonal and day-to-day changes of the central position of the S~ overhead current system. J. Geophys. Res. 1960, 65, 3835–3839. [Google Scholar] [CrossRef]
- Gupta, J.C. Movement of the Sq foci in 1958. PAGEOPH 1973, 110, 2076–2084. [Google Scholar] [CrossRef]
- Tarpley, J.D. Seasonal movement of the Sq Current foci and related effects in the equatorial electrojet. J. Atmos. Terr. Phys. 1973, 35, 1063–1071. [Google Scholar] [CrossRef]
- Schlapp, D.M. Day-to-day variability of the latitudes of the Sq foci. J. Atmos. Terr. Phys. 1976, 38, 573–577. [Google Scholar] [CrossRef]
- Rajaram, M. Determination of the latitude of Sq focus and its relation to electrojet variations. J. Atmos. Terr. Phys. 1984, 45, 573–578. [Google Scholar] [CrossRef]
- Kane, R.P. Variability of the Sq focus position in the South American continent. Proc. Indian Acad. Sci. 1990, 99, 405–412. [Google Scholar]
- Stening, R.; Reztsova, T.; Minh, L.H. Day-to-day changes in the latitudes of the foci of the Sq current system and their relation to equatorial electrojet strength. J. Geophys. Res. 2005, 110, A10308. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Richmond, A.D.; Maute, A.; Wu, Q.; Ortland, D.A.; Yoshikawa, A.; Adimula, I.A.; Rabiu, B.; Kunitake, M.; Tsugawa, T. Ground magnetic effects of the equatorial electrojet simulated by the TIE-GCM driven by TIMED satellite data. J. Geophys. Res. Space Phys. 2014, 119, 3150–3161. [Google Scholar] [CrossRef]
- Chen, G.; Xu, W.; Du, A.; Wu, Y.; Chen, B.; Liu, X. Statistical characteristics of the day-to-day variability in the geomagnetic Sq field. J. Geophys. Res. 2007, 112, A06320. [Google Scholar] [CrossRef]
- Lloyd, H. A Treatise on Magnetism, General and Terrestrial; Longmans Green: London, UK, 1874. [Google Scholar]
- Howe, H.H. An anomaly of the magnetic daily variation at Honolulu. J. Geophys. Res. 1950, 55, 271–274. [Google Scholar] [CrossRef]
- Wulf, O.R. A possible effect of atmospheric circulation in the daily variation of the Earth’s magnetic field. Mon. Weather Rev. 1963, 91, 520–526. [Google Scholar] [CrossRef]
- Wulf, O.R. A possible effect of atmospheric circulation in the daily variation of the Earth’s magnetic field, II. Mon. Weather Rev. 1965, 93, 127–132. [Google Scholar] [CrossRef]
- Chulliat, A.; Blanter, E.; Le Mouël, J.; Shnirman, M. On the seasonal asymmetry of the diurnal and semidiurnal geomagnetic variations. J. Geophys. Res. 2005, 110, A05301. [Google Scholar] [CrossRef]
- Falayi, E.O. Equinoctial Asymmetry of Horizontal Component of Solar Quiet Variation (SqH). Adv. Phys. Theor. Appl. 2014, 38, 22–29. [Google Scholar]
- Takeda, M. The correlation between the variation in ionospheric conductivity and that of the geomagnetic Sq field. J. Atmos. Sol. Terr. Phys. 2002, 64, 1617–1621. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Xu, W.; Li, W. UT-variability of the Sq dynamo current and its ground magnetic field reconstruction. Chin. J. Geophys. 1993, 36, 305–316. [Google Scholar]
- Hamid, N.S.A.; Liu, H.; Uozumi, T.; Yumoto, K.; Veenadhari, B.; Yoshikawa, A.; Sanchez, J.A. Relationship between the equatorial electrojet and global Sq currents at the dip equator region. Earth Planets Space 2014, 66, 146. [Google Scholar] [CrossRef]
- Xu, W.; Kamide, Y. Decomposition of daily geomagnetic variation by using method of natural orthogonal component. J. Geophys. Res. 2004, 109, A05218. [Google Scholar] [CrossRef]
- Shiraki, M. Variation of focus latitude and intensity of overhead current system of Sq with the solar activity. Mem. Kakioka Magn. Obs. 1973, 15, 107–126. [Google Scholar]
- Olsen, N. The solar cycle variability of lunar and solar daily geomagnetic variations. Ann. Geophys. 1993, 11, 254–262. [Google Scholar]
- Torta, J.M.; Marsal, S.; Curto, J.J.; Gaya-Piqué, L.R. Behaviour of the quiet-day geomagnetic variation at Livingston Island and variability of the Sq focus position in the South American-Antarctic Peninsula region. Earth Planets Space 2010, 62, 297–307. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, W.; Chen, G. Analysis of periodical characteristics of Sq index. Chi. J. Geophys. 2012, 55, 177–183. [Google Scholar] [CrossRef]
- Alfonsi, L.; Cesaroni, C.; Spogli, L.; Regi, M.; Paul, A.; Ray, S.; Lepidi, S.; Di Mauro, D.; Haralambous, H.; Oikonomou, C.; et al. Ionospheric disturbances over the Indian sector during 8 September 2017 geomagnetic storm: Plasma structuring and propagation. Space Weather 2021, 19, e2020SW002607. [Google Scholar] [CrossRef]
- Regi, M.; Del Corpo, A.; De Lauretis, M. The use of the empirical mode decomposition for the identification of mean field aligned reference frames. Ann. Geophys. 2016, 59, G0651:1–G0651:16. [Google Scholar]
- Laken, B.A.; Čalogović, J. Composite analysis with Monte Carlo methods: An example with cosmic rays and clouds. J. Space Weather Space Clim. 2013, 3, A29. [Google Scholar] [CrossRef]
- Vichare, G. Seasonal variation of the Sq focus position during 2006–2010. Adv. Space Res. 2017, 59, 542–556. [Google Scholar] [CrossRef]
- Takeda, M. Contribution of wind, conductivity, and geomagnetic main field to the variation in the geomagnetic Sq field. J. Geophys. Res. 2013, 118, 4516–4522. [Google Scholar] [CrossRef]
- Titheridge, J.E. The electron content of the southern mid-latitude ionosphere, 1965–1971. J. Atmos. Terr. Phys. 1973, 35, 981–1001. [Google Scholar] [CrossRef]
- Aruliah, A.L.; Farmer, A.D.; Fuller-Rowell, T.J.; Wild, M.N.; Hapgood, M.; Rees, D. An equinoctial asymmetry in the high-latitude thermosphere and ionosphere. J. Geophys. Res. 1996, 101, 15713–15722. [Google Scholar] [CrossRef]
- Balan, N.; Otsuka, Y.; Fukao, S.; Bailey, G.J. Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar. J. Geophys. Res. 1998, 103, 9481–9486. [Google Scholar] [CrossRef]
- Zhao, B.; Wan, W.; Liu, L.; Mao, T.; Ren, Z.; Wang, M.; Christensen, A.B. Features of annual and semiannual variations derived from the global ionospheric maps of total electron content. Ann. Geophys. 2007, 25, 2513–2527. [Google Scholar] [CrossRef]
- Liu, L.; He, M.; Yue, X.; Ning, B.; Wan, W. Ionosphere around equinoxes during low solar activity. J. Geophys. Res. 2010, 115, A09307. [Google Scholar] [CrossRef]
- Liu, L.; Luan, X.; Wan, W.; Lei, J.; Ning, B. Seasonal behavior of equivalent winds over Wuhan derived from ionospheric data in 2000–2001. Adv. Space Res. 2003, 32, 1765–1770. [Google Scholar] [CrossRef]
- Kil, H.; Oh, S.-J.; Paxton, L.J.; Fang, T.-W. High-resolution vertical E × B drift model derived from ROCSAT-1 data. J. Geophys. Res. 2009, 114, A10314. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Liu, L.; Chen, Y.; Le, H. Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J. Geophys. Res. 2011, 116, A02308. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Xiong, J.; Liu, L. Simulated equinoctial asymmetry of the ionospheric vertical plasma drifts. J. Geophys. Res. 2012, 117, A01301. [Google Scholar] [CrossRef]
- Campbell, W.H.; Schiffmacher, E.R.; Kroehl, H.W. Global quiet day field variation model WDCA/SQ1. Eos Trans. AGU 1989, 70, 66–74. [Google Scholar] [CrossRef]
- Xu, W.-Y.; Li, W.-D. Anomalous characteristics of Sq in east Asia. Chin. J. Space Sci. 1994, 15, 134–143. [Google Scholar]
- Pedatella, N.M.; Forbes, J.M.; Richmond, A.D. Seasonal and longitudinal variations of the solar quiet (Sq) current system during solar minimum determined by CHAMP satellite magnetic field observations. J. Geophys. Res. 2011, 116, A04317. [Google Scholar] [CrossRef]
- Sager, P.L.; Huang, T.S. Longitudinal dependence of the daily geomagnetic variation during quiet time. J. Geophys. Res. 2002, 107, A111397. [Google Scholar] [CrossRef]
Site | Geographic Coordinates | Geomagnetic Coordinates | Time Coverage |
---|---|---|---|
BMT | 40.3° N, 116.2° E | 29.9°, 186.8° | 1996–2013 |
LZH | 36.1° N, 103.9° E | 25.7°, 175.9° | 1980, 1986, 1989–1992, 1995, 1997–2011 |
CDP | 31.0° N, 103.7° E | 20.6°, 175.7° | 1995–2002, 2005–2007 |
WHN | 30.5° N, 114.6° E | 20.1°, 185.62° | 1980, 1995–2002, 2005–2007 |
GZH | 23.1° N, 113.3° E | 12.7°, 184.6° | 1960–1993, 2003–2009 |
MUT | 14.4° N, 121.0° E | 4.2°, 192.2° | 1957–1959, 1963–1972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, L.; Ren, Z. Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain. Appl. Sci. 2021, 11, 9150. https://doi.org/10.3390/app11199150
Wu Y, Liu L, Ren Z. Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain. Applied Sciences. 2021; 11(19):9150. https://doi.org/10.3390/app11199150
Chicago/Turabian StyleWu, Yingyan, Libo Liu, and Zhipeng Ren. 2021. "Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain" Applied Sciences 11, no. 19: 9150. https://doi.org/10.3390/app11199150
APA StyleWu, Y., Liu, L., & Ren, Z. (2021). Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain. Applied Sciences, 11(19), 9150. https://doi.org/10.3390/app11199150