Towards an Efficient Chipless RFID System for Modern Applications in IoT Networks
Abstract
1. Introduction
2. The RFID Tag Design
3. The RFID Antenna Design
4. RFID System Validation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdulkawi, W.M.; Sheta, A.-F.A. K-State Resonators for High-Coding-Capacity Chipless RFID Applications. IEEE Access 2019, 7, 185868–185878. [Google Scholar] [CrossRef]
- Mulloni, V.; Donelli, M. Chipless RFID Sensors for the Internet of Things: Challenges and Opportunities. Sensors 2020, 20, 2135. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Issa, K.; Sheta, A.-F.A.; Alshebeili, S.A. A Novel Printable Tag of M-Shaped Strips for Chipless Radio-Frequency Identification in IoT Applications. Electronics 2020, 9, 2116. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.F.A.; Issa, K.; Alshebeili, S.A. Compact Printable Inverted-M Shaped Chipless RFID Tag Using Dual-Polarized Excitation. Electronics 2019, 8, 580. [Google Scholar] [CrossRef]
- Ramzan, R.; Omar, M.; Siddiqui, O.; Ksiksi, T.; Bastaki, N. Internet of Trees (IoTr) Implemented by Highly Dispersive Electromagnetic Sensors. IEEE Sens. J. 2020, 21, 642–650. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.-F.A. Chipless RFID Sensors Based on Multistate Coupled Line Resonators. Sens. Actuators A Phys. 2020, 309, 112025. [Google Scholar] [CrossRef]
- Sharma, V.; Hashmi, M. Advances in the Design Techniques and Applications of Chipless RFIDs. IEEE Access 2021, 9, 79264–79277. [Google Scholar] [CrossRef]
- Javed, N.; Azam, M.A.; Amin, Y. Chipless RFID Multi-sensor for Temperature Sensing and Crack Monitoring in an IoT Environment. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Trinh, L.H.; Le, T.N.; Staraj, R.; Ferrero, F.; Lizzi, L. A Pattern-Reconfigurable Slot Antenna for IoT Network Concentrators. Electronics 2017, 6, 105. [Google Scholar] [CrossRef]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Stergiou, C.; Psannis, K.E.; Gupta, B.B.; Ishibashi, Y. Security, privacy & efficiency of sustainable Cloud Computing for Big Data & IoT. Sustain. Comput. Inform. Syst. 2018, 19, 174–184. [Google Scholar] [CrossRef]
- Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication; John Wiley & Sons: London, UK, 2010. [Google Scholar]
- Preradovic, S.; Karmakar, N.C. Multiresonator-Based Chipless RFID: Barcode of the Future; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Rajasekhar, N.; Reddy, R.R.; Darimireddy, N. V-shaped slits and a slot loaded pentagonal boundary patch antennas for wideband applications. In Proceedings of the 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), Bangalore, India, 24–26 November 2017; pp. 1–5. [Google Scholar]
- Darimireddy, N.K.; Reddy, R.R.; Prasad, A.M. A Miniaturized Hexagonal-Triangular Fractal Antenna for Wide-Band Applications [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 2018, 60, 104–110. [Google Scholar] [CrossRef]
- Sujatha, M.; Reddy, R.R.; Darimireddy, N.K.; Ramamohan, B. Multi Wideband Hexagonal-Spiral Microstrip Band-Pass Filter for Wireless Applications. In Proceedings of the 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.A. High coding capacity chipless radiofrequency identification tags. Microw. Opt. Technol. Lett. 2019, 62, 592–599. [Google Scholar] [CrossRef]
- Hussain, M.; Amin, Y.; Lee, K.-G. A Compact and Flexible UHF RFID Tag Antenna for Massive IoT Devices in 5G System. Sensors 2020, 20, 5713. [Google Scholar] [CrossRef] [PubMed]
- Ul, Z.; Ullah, Z.; Abedin, Z.U. Design of a Microstrip Patch Antenna with High Bandwidth and High Gain for UWB and Different Wireless Applications. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 379–382. [Google Scholar] [CrossRef][Green Version]
- Das, T.K.; Dwivedy, B.; Behera, S.K. Design of a meandered line microstrip antenna with a slotted ground plane for RFID applications. AEU-Int. J. Electron. Commun. 2020, 118, 153130. [Google Scholar] [CrossRef]
- Haraz, O.M.; Ashraf, M.; Alshebili, S.; Alshareef, M.R.; Behairy, H.M. UWB monopole antenna chipless RFID tags using 8-bit open circuit stub resonators. In Proceedings of the 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, Poland, 9–11 May 2016; pp. 1–4. [Google Scholar]
- Babaeian, F.; Karmakar, N. A High Gain Dual Polarized Ultra-Wideband Array of Antenna for Chipless RFID Applications. IEEE Access 2018, 6, 73702–73712. [Google Scholar] [CrossRef]
- Ray, K.P.; Thakur, S.; Deshmukh, R.A. UWB printed sectoral monopole antenna with dual polarization. Microw. Opt. Technol. Lett. 2012, 54, 2066–2070. [Google Scholar] [CrossRef]
- Gupta, A.; Srivastava, D.K.; Saini, J.P.; Verma, R.K. Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications. J. Comput. Electron. 2019, 19, 457–468. [Google Scholar] [CrossRef]
- Daghari, M.; Sakli, H. Radiation performance enhancement of an ultra wide band antenna using metamaterial band-pass filter. Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 5861–5870. [Google Scholar] [CrossRef]
- Kirtania, S.; Younes, B.; Hossain, A.; Karacolak, T.; Sekhar, P. CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications. Micromachines 2021, 12, 453. [Google Scholar] [CrossRef]
- Aslam, B.; Kashif, M.; Amin, Y.; Tenhunen, H. Low-profile magnetically coupled dual resonance patch antenna for UHF RFID applications. AEU-Int. J. Electron. Commun. 2021, 133, 153672. [Google Scholar] [CrossRef]
- Babaeian, F.; Karmakar, N.C. Time and Frequency Domains Analysis of Chipless RFID Back-Scattered Tag Reflection. IoT 2020, 1, 7. [Google Scholar] [CrossRef]
- Herrojo, C.; Mata-Contreras, J.; Nunez, A.; Paredes, F.; Ramon, E.; Martin, F. Near-Field Chipless-RFID System with High Data Capacity for Security and Authentication Applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 5298–5308. [Google Scholar] [CrossRef]
- Hossain, A.; Ibrahimy, M.; Motakabber, S.; Azam, S.; Islam, M. Multi-resonator application on size reduction for retransmission-based chipless RFID tag. Electron. Lett. 2021, 57, 26–29. [Google Scholar] [CrossRef]
- Preradovic, S.; Balbin, I.; Karmakar, N.; Swiegers, G.F. Multiresonator-Based Chipless RFID System for Low-Cost Item Tracking. IEEE Trans. Microw. Theory Tech. 2009, 57, 1411–1419. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. A Depolarizing Chipless RFID Tag for Robust Detection and Its FCC Compliant UWB Reading System. IEEE Trans. Microw. Theory Tech. 2013, 61, 2982–2994. [Google Scholar] [CrossRef]
- Ma, Z.-H.; Yang, J.-H.; Chen, C.-C.; Yang, C.-F. A re-transmitted chipless tag using CSRR coupled structure. Microsyst. Technol. 2018, 24, 4373–4382. [Google Scholar] [CrossRef]
- Babaeian, F.; Karmakar, N. A UWB Antenna for Chipless RFID Tag Detection. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; pp. 1–6. [Google Scholar]













| Patch Design | Partial Ground Plane and Feed Line Design | Step-Cut Design | |||||
|---|---|---|---|---|---|---|---|
| Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) |
| Patch length (Lp) | 39.6 | Ground length (Lg) | 34.5 | l1 | 2.19 | w1 | 1.89 |
| Patch width (Wp) | 25 | Ground width (Wg) | 25 | l2 | 2.11 | w2 | 1.99 |
| Gap between the patch and ground plane | 0.52 | Feeder length (Lf) | 35 | l3 | 3.64 | w3 | 1.97 |
| Feeder width (Wf) | 2.4 | l4 | 23.72 | w4 | 13.30 | ||
| Reference | Frequency Bandwidth (GHz) | Antenna Type | Max. Gain (dB) | Range Achieved (cm) |
|---|---|---|---|---|
| [31] | 2 to 10 and 2 to 2.5 | Circular UWB monopole and LPDA | 1 and 5.5 | 5–40 |
| [30] | 4.28 to 9 | fingertip-shaped antenna (FSA) | - | 2 |
| [32] | 2 to 32 | Commercial | - | 10–20 |
| [33] | 4.24 to 5.33 | UWB monopole | 1.8–2.5 | 30 |
| [34] | 4.15 to 8 | UWB patch | 15.5 with two elements array | 35 |
| This work | 5 to 12 | USRP | 8 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkawi, W.M.; Nizam-Uddin, N.; Sheta, A.F.A.; Elshafiey, I.; Al-Shaalan, A.M. Towards an Efficient Chipless RFID System for Modern Applications in IoT Networks. Appl. Sci. 2021, 11, 8948. https://doi.org/10.3390/app11198948
Abdulkawi WM, Nizam-Uddin N, Sheta AFA, Elshafiey I, Al-Shaalan AM. Towards an Efficient Chipless RFID System for Modern Applications in IoT Networks. Applied Sciences. 2021; 11(19):8948. https://doi.org/10.3390/app11198948
Chicago/Turabian StyleAbdulkawi, Wazie M., N. Nizam-Uddin, Abdel Fattah A. Sheta, Ibrahim Elshafiey, and Abdullah M. Al-Shaalan. 2021. "Towards an Efficient Chipless RFID System for Modern Applications in IoT Networks" Applied Sciences 11, no. 19: 8948. https://doi.org/10.3390/app11198948
APA StyleAbdulkawi, W. M., Nizam-Uddin, N., Sheta, A. F. A., Elshafiey, I., & Al-Shaalan, A. M. (2021). Towards an Efficient Chipless RFID System for Modern Applications in IoT Networks. Applied Sciences, 11(19), 8948. https://doi.org/10.3390/app11198948

