The Antiviral Potential of Probiotics—A Review on Scientific Outcomes
Abstract
:1. Introduction
2. In Vitro Evidence of the Antiviral Activities of Probiotics
3. In Vivo Evidence of the Antiviral Activities of Probiotics
4. Clinical Studies on the Antiviral Potential of Probiotics
5. Anti-Corona Viral Activity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guarner, F.; Schaafsma, G.J. Probiotics. Int. J. Food Microbiol. 1998, 39, 237–238. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [PubMed]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-promoting factors produced by microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO) of the United Nations; World Health Organization (WHO). Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group: London, ON, Canada, 2002. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtoranta, L.; Pitkäranta, A.; Korpela, R. Probiotics in respiratory virus infections. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 2004, 28, 405–440. [Google Scholar] [CrossRef] [Green Version]
- Bodera, P.; Chcialowski, A. Immunomodulatory effect of probiotic bacteria. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 58–64. [Google Scholar] [CrossRef]
- Guarino, A.; Lo Vecchio, A.; Canani, R.B. Probiotics as prevention and treatment for diarrhea. Curr. Opin. Gastroenterol. 2009, 25, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Probiotic based therapy for atopic dermatitis: Outcomes of clinical studies. Asian Pac. J. Trop. Biomed. 2018, 8, 328–332. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A review on anti-aging properties of probiotics. Int. J. Appl. Pharm. 2018, 10, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Kesika, P.; Sivamaruthi, B.S.; Chaiyasut, C. Do probiotics improve the health status of individuals with diabetes mellitus? A review on outcomes of clinical trials. BioMed Res. Int. 2019, 2019, 1531567. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. The role of probiotics in colorectal cancer management. Evid.-Based Complement. Altern. Med. 2020, 2020, 3535982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A review of the role of probiotic supplementation in dental caries. Probiotics Antimicrob. Proteins 2020, 12, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in Medicine: A Long Debate. Front. Immunol. 2020, 11, 2192. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, N.; Moudgal, V. Probiotics: A review. J. Clin. Outcomes Manag. 2012, 19, 76–84. [Google Scholar]
- Butera, A.; Gallo, S.; Maiorani, C.; Molino, D.; Chiesa, A.; Preda, C.; Esposito, F.; Scribante, A. Probiotic alternative to chlorhexidine in periodontal therapy: Evaluation of clinical and microbiological parameters. Microorganisms 2021, 9, 69. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Ge, T.; Xiao, Y.; Liao, Y.; Cui, Y.; Zhang, Y.; Ho, W.; Yu, G.; Zhang, T. Probiotics for prevention and treatment of respiratory tract infections in children. Medicine 2016, 95, e4509. [Google Scholar] [CrossRef] [PubMed]
- King, S.; Tancredi, D.; Lenoir-Wijnkoop, I.; Gould, K.; Vann, H.; Connors, G.; Sanders, M.E.; Linder, J.A.; Shane, A.L.; Merenstein, D. Does probiotic consumption reduce antibiotic utilization for common acute infections? A systematic review and meta-analysis. Eur. J. Public Health 2019, 29, 494–499. [Google Scholar] [CrossRef]
- Hancock, K.; Veguilla, V.; Lu, X.; Zhong, W.; Butler, E.N.; Sun, H.; Liu, F.; Dong, L.; DeVos, J.R.; Gargiullo, P.M.; et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N. Engl. J. Med. 2009, 361, 1945–1952. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.; Del Mar, C. Safety of neuraminidase inhibitors for influenza. Expert Opin. Drug Saf. 2006, 5, 603–608. [Google Scholar] [CrossRef]
- Oxford, J.S. Antivirals for the treatment and prevention of epidemic and pandemic influenza. Influenza Other Respir. Viruses 2007, 1, 27–34. [Google Scholar] [CrossRef]
- Beigel, J.; Bray, M. Current and future antiviral therapy of severe seasonal and avian influenza. Antivir. Res. 2008, 78, 91–102. [Google Scholar] [CrossRef]
- Long, J.K.; Mossad, S.B.; Goldman, M.P. Antiviral agents for treating influenza. Clevel. Clin. J. Med. 2000, 67, 92–95. [Google Scholar]
- Moscona, A. Oseltamivir resistance–disabling our influenza defenses. N. Engl. J. Med. 2005, 353, 2633–2636. [Google Scholar] [CrossRef]
- Cha, M.-K.; Lee, D.-K.; An, H.-M.; Lee, S.-W.; Shin, S.-H.; Kwon, J.-H.; Kim, K.-J.; Ha, N.-J. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012, 10, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboubakr, H.A.; El-Banna, A.A.; Youssef, M.M.; Al-Sohaimy, S.A.; Goyal, S.M. Antiviral effects of Lactococcus lactis on Feline Calicivirus, A Human Norovirus Surrogate. Food Environ. Virol. 2014, 6, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Breiman, A.; le Pendu, J.; Uyttendaele, M. Anti-viral effect of Bifidobacterium adolescentis against noroviruses. Front. Microbiol. 2016, 7, 864. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.A.; Chenoll, E.; Casinos, B.; Bataller, E.; Ramón, D.; Genovés, S.; Montava, R.; Ribes, J.M.; Buesa, J.; Fàbrega, J.; et al. Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl. Environ. Microbiol. 2011, 77, 8775–8783. [Google Scholar] [CrossRef] [Green Version]
- Galán, N.N.O.; Rubiano, J.C.U.; Reyes, F.A.V.; Duarte, K.P.F.; Cárdenas, S.P.S.; Fernandez, M.F.G. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP4 protein production. J. Appl. Microbiol. 2016, 120, 1041–1051. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Duarte, K.P.; Olaya-Galán, N.N.; Salas-Cárdenas, S.P.; Lopez-Rozo, J.; Gutierrez-Fernandez, M.F. Bifidobacterium adolescentis (DSM 20083) and Lactobacillus casei (Lafti L26-DSL): Probiotics able to block the in vitro adherence of rotavirus in MA104 Cells. Probiotics Antimicrob. Proteins 2018, 10, 56–63. [Google Scholar] [CrossRef]
- Han, Y.O.; Jeong, Y.; You, H.J.; Ku, S.; Ji, G.E.; Park, M.S. The anti-rotaviral activity of low molecular weight and non-proteinaceous substance from Bifidobacterium longum BORI cell extract. Microorganisms 2019, 7, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maragkoudakis, P.A.; Chingwaru, W.; Gradisnik, L.; Tsakalidou, E.; Cencic, A. Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int. J. Food Microbiol. 2010, 141 (Suppl. 1), S91–S97. [Google Scholar] [CrossRef]
- Harata, G.; He, F.; Hiruta, N.; Kawase, M.; Kubota, A.; Hiramatsu, M.; Yausi, H. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett. Appl. Microbiol. 2010, 50, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Kawase, M.; He, F.; Kubota, A.; Harata, G.; Hiramatsu, M. Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett. Appl. Microbiol. 2010, 51, 6–10. [Google Scholar] [CrossRef]
- Park, M.K.; Ngo, V.; Kwon, Y.M.; Lee, Y.T.; Yoo, S.; Cho, Y.H.; Hong, S.M.; Hwang, H.S.; Ko, E.J.; Jung, Y.J.; et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS ONE 2013, 8, e75368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kim, J.I.; Bae, J.-Y.; Yoo, K.; Kim, H.; Kim, I.-H.; Park, M.-S.; Lee, I. Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice. J. Microbiol. 2018, 56, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Makino, S.; Ikegami, S.; Kume, A.; Horiuchi, H.; Sasaki, H.; Orii, N. Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Br. J. Nutr. 2010, 104, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Nagai, T.; Makino, S.; Ikegami, S.; Itoh, H.; Yamada, H. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int. Immunopharmacol. 2011, 11, 2246–2250. [Google Scholar]
- Kawashima, T.; Hayashi, K.; Kosaka, A.; Kawashima, M.; Igarashi, T.; Tsutsui, H.; Tsuji, N.M.; Nishimura, I.; Hayashi, T.; Obata, A. Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int. Immunopharmacol. 2011, 11, 2017–2024. [Google Scholar] [CrossRef]
- Hori, T.; Kiyoshima, J.; Shida, K.; Yasui, H. Augmentation of cellular immunity and reduction of influenza virus titer in aged mice fed Lactobacillus casei strain Shirota. Clin. Vaccine Immunol. 2002, 9, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Yasui, H.; Kiyoshima, J.; Hori, T. Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota. Clin. Vaccine Immunol. 2004, 11, 675–679. [Google Scholar] [CrossRef] [Green Version]
- Waki, N.; Yajima, N.; Suganuma, H.; Buddle, B.M.; Luo, D.; Heiser, A.; Zheng, T. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Lett. Appl. Microbiol. 2014, 58, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Moriya, T.; Sakai, F.; Ikeda, N.; Shiozaki, T.; Hosoya, T.; Nakagawa, H.; Miyazaki, T. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Sci. Rep. 2014, 4, 4638. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.M.; Glass, R.I.; LeBaron, C.W.; Ho, M.S. Global seasonality of rotavirus infections. Bull. World Health Organ. 1990, 68, 171–177. [Google Scholar] [PubMed]
- Parashar, U.D.; Hummelman, E.G.; Bresee, J.S.; Miller, M.A.; Glass, R.I. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 2003, 9, 565–572. [Google Scholar] [CrossRef]
- Kadooka, Y.; Tominari, K.; Sakai, F.; Yasui, H. Prevention of rotavirus-induced diarrhea by preferential secretion of IgA in breast milk via maternal administration of Lactobacillus gasseri SBT2055. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 66–71. [Google Scholar] [CrossRef]
- Pant, N.; Marcotte, H.; Brüssow, H.; Svensson, L.; Hammarström, L. Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiol. 2007, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Azevedo, M.S.; Gonzalez, A.M.; Saif, L.J.; Van Nguyen, T.; Wen, K.; Yousef, A.E.; Yuan, L. Influence of probiotic Lactobacilli colonization on neonatal B cell responses in a gnotobiotic pig model of human rotavirus infection and disease. Vet. Immunol. Immunopathol. 2008, 122, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Azevedo, M.S.P.; Wen, K.; Gonzalez, A.; Saif, L.J.; Li, G.; Yousef, A.E.; Yuan, L. Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine 2008, 26, 3655–3661. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, V.; Renard, N.; Makar, A.; Van Royen, P.; Bogers, J.P.; Lardon, F.; Peeters, M.; Baay, M. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: A prospective controlled pilot study. Eur. J. Cancer Prev. 2013, 22, 46–51. [Google Scholar] [CrossRef]
- Ou, Y.C.; Fu, H.C.; Tseng, C.W.; Wu, C.H.; Tsai, C.C.; Lin, H. The influence of probiotics on genital high-risk human papilloma virus clearance and quality of cervical smear: A randomized placebo-controlled trial. BMC Womens Health 2019, 19, 103. [Google Scholar] [CrossRef] [Green Version]
- Nagata, S.; Asahara, T.; Ohta, T.; Yamada, T.; Kondo, S.; Bian, L.; Wang, C.; Yamashiro, Y.; Nomoto, K. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. Br. J. Nutr. 2011, 106, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Kumpu, M.; Lehtoranta, L.; Roivainen, M.; Rönkkö, E.; Ziegler, T.; Söderlund-Venermo, M.; Kautiainen, H.; Järvenpää, S.; Kekkonen, R.; Hatakka, K.; et al. The use of the probiotic Lactobacillus rhamnosus GG and viral findings in the nasopharynx of children attending day care. J. Med. Virol. 2013, 85, 1632–1638. [Google Scholar] [CrossRef]
- Berggren, A.; Ahrén, I.L.; Larsson, N.; Önning, G. Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur. J. Nutr. 2011, 50, 203–210. [Google Scholar] [CrossRef]
- Olivares, M.; Díaz-Ropero, M.P.; Sierra, S.; Lara-Villoslada, F.; Fonollá, J.; Navas, M.; Rodríguez, J.M.; Xaus, J. Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 2007, 23, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, L.; Tarnow, I.; Eskesen, D.; Morberg, C.M.; Michelsen, B.; Bügel, S.; Dragsted, L.O.; Rijkers, G.T.; Calder, P.C. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: A randomized, double-blind, placebo-controlled, parallel-group study. Am. J. Clin. Nutr. 2015, 101, 1188–1196. [Google Scholar] [PubMed] [Green Version]
- Przemska-Kosicka, A.; Childs, C.E.; Enani, S.; Maidens, C.; Dong, H.; Dayel, I.B.; Tuohy, K.; Todd, S.; Gosney, M.A.; Yaqoob, P. Effect of a synbiotic on the response to seasonal influenza vaccination is strongly influenced by degree of immunosenescence. Immun. Ageing 2016, 13, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Zhang, H.; Lu, H.; Qian, G.; Lv, L.; Zhang, C.; Guo, J.; Jiang, H.; Zheng, B.; Yang, F.; et al. The Effect of Probiotic Treatment on Patients Infected with the H7N9 Influenza Virus. PLoS ONE 2016, 11, e0151976. [Google Scholar]
- Baron, M. A patented strain of Bacillus coagulans increased immune response to viral challenge. Postgrad. Med. 2009, 121, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hylwka, T.; Smieja, M.; Surrette, M.; Bowdish, D.M.E.; Loeb, M. Probiotics to Prevent Respiratory Infections in Nursing Homes: A Pilot Randomized Controlled Trial. J. Am. Geriatr. Soc. 2018, 66, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Park, J.E.; Kim, M.J.; Seo, J.G.; Lee, J.H.; Ha, N.J. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.B.; Lee, H.C.; Hu, J.J.; Hou, S.Y.; Liu, H.L.; Fang, H.W. Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. J. Trop. Pediatr. 2009, 55, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanappa, D. Randomized double blinded controlled trial to evaluate the efficacy and safety of Bifilac in patients with acute viral diarrhea. Indian J. Pediatr. 2008, 75, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Luoto, R.; Ruuskanen, O.; Waris, M.; Kalliomäki, M.; Salminen, S.; Isolauri, E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2014, 133, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.B.; Woodfolk, J.A.; Borish, L.; Steinke, J.W.; Patrie, J.T.; Muehling, L.M.; Lahtinen, S.; Lehtinen, M.J. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection—A randomised controlled trial. Benef. Microbes 2017, 8, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleeson, M.; Bishop, N.C.; Struszczak, L. Effects of Lactobacillus casei Shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: A placebo-controlled, randomized trial. Eur. J. Appl. Physiol. 2016, 116, 1555–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar-García, J.; Hernández, J.J.; Güerri-Fernández, R.; González, A.; Lerma, E.; Guelar, A.; Saenz, D.; Sorlí, L.; Montero, M.; Horcajada, J.P.; et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients. JAIDS J. Acquir. Immune Defic. Syndr. 2015, 68, 256–263. [Google Scholar] [CrossRef]
- Villar-García, J.; Güerri-Fernández, R.; Moya, A.; González, A.; Hernández, J.J.; Lerma, E.; Guelar, A.; Sorli, L.; Horcajada, J.P.; Artacho, A.; et al. Impact of probiotic Saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: A double-blind, randomised, placebo-controlled trial. PLoS ONE 2017, 12, e0173802. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, A.H.; Taghinezhad-S, S.; Keyvani, H.; Ghobadi, N. Comparison of acyclovir and multi strain Lactobacillus brevis in women with recurrent genital herpes infections: A double-blind, randomized, controlled study. Probiotics Antimicrob. Proteins 2018, 10, 740–747. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Sahlah, S.A.; Lateefah AlHumaid, A.J.; Singh, R. Probiotic lactobacilli: Can be a remediating supplement for pandemic COVID-19. A review. J. King Saud Univ. Sci. 2021, 33, 101286. [Google Scholar] [CrossRef]
- Sundararaman, A.; Ray, M.; Ravindra, P.V.; Halami, P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 8089–8104. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ho, W.; Huang, Y.; Jin, D.Y.; Li, S.; Liu, S.L.; Liu, X.; Qiu, J.; Sang, Y.; Wang, Q.; et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet 2020, 395, 949–950. [Google Scholar] [CrossRef]
- Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Wang, Y.; Qi, W. The small intestine, an underestimated site of SARS-CoV-2 infection: From red queen effect to probiotics. Preprints 2020. [CrossRef] [Green Version]
- Yu, L.; Tong, Y.; Shen, G.; Fu, A.; Lai, Y.; Zhou, X.; Yuan, Y.; Wang, Y.; Pan, Y.; Yu, Z.; et al. Immunodepletion with Hypoxemia: A potential high risk subtype of coronavirus disease 2019. medRxiv 2020. [Google Scholar] [CrossRef]
- Chiu, L.; Bazin, T.; Truchetet, M.E.; Schaeverbeke, T.; Delhaes, L.; Pradeu, T. Protective microbiota: From localized to long-reaching co-immunity. Front. Immunol. 2017, 8, 1678. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.-Y.; Zhang, F.; Liu, Q.; Li, A.Y.L.; Chung, A.C.K.; Cheung, C.P.; Tso, E.Y.K.; Fung, K.S.C.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Yamamoto, S.; Saito, M.; Tamura, A.; Prawisuda, D.; Mizutani, T.; Yotsuyanagi, H. The human microbiome and COVID-19: A systematic review. PLoS ONE 2021, 16, e0253293. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, X.; Jiang, G.; Tang, H.; Ming, S.; Tang, L.; Lu, J.; Guo, C.; Shan, H.; Huang, X. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. npj Biofilms Microbiomes 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Leyer, G.J.; Li, S.; Mubasher, M.E.; Reifer, C.; Ouwehand, A.C. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 2009, 124, e172–e179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Ma, W.T.; Pang, M.; Fan, Q.L.; Hua, J.L. The commensal microbiota and viral infection: A comprehensive review. Front. Immunol. 2019, 10, 1551. [Google Scholar] [CrossRef] [PubMed]
- D’Ettorre, G.; Ceccarelli, G.; Marazzato, M.; Campagna, G.; Pinacchio, C.; Alessandri, F.; Ruberto, F.; Rossi, G.; Celani, L.; Scagnolari, C.; et al. Challenges in the management of SARS-CoV2 infection: The role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front. Med. 2020, 7, 389. [Google Scholar] [CrossRef]
- Chai, W.; Burwinkel, M.; Wang, Z.; Palissa, C.; Esch, B.; Twardziok, S.; Rieger, J.; Wrede, P.; Schmidt, M.F.G. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch. Virol. 2013, 158, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Probiotic(s) | Model | Anti-Viral | Findings | Ref. |
---|---|---|---|---|
Bifidobacterium adolescentis SPM1005-A | SiHa cells | Human papillomavirus type 16 | ↓ expression of E6 and E7 oncogene | [26] |
Lactococcus lactis | Crandell-Reese feline kidney cells | Feline Calicivirus | ↓ virus titers | [27] |
B. adolescentis | Caco-2, HT-29 and RAW 264.7 cells | Norovirus | Inhibit the multiplication of Murine norovirus-1 on RAW 264.7 cells ↓ Binding of human NoV GI.1 VLPs to Caco-2 and HT-29 cells | [28] |
Bifidobacterium longum subsp. infantis CECT 7210 | MA-104 and HT-29 cell lines | Rotavirus | ↓ virus multiplication and infection. | [29] |
Lactobacilluscasei CMPUJ 415, Lactobacillus fermentum CMPUJ 413, Bifidobacterium bifidum and B. adolescentis DSM 20083. | MA104 cells | Rotavirus | ↓ NSP4 production ↓ Ca2+ release | [30] |
B. adolescentis (DSM 20083) and L. casei (Lafti L26-DSL) | MA104 cells | Rotavirus | ↓ Infectivity of virus | [31] |
B. longum BORI | MA104 cells | Rotavirus | Inhibit the viral infection | [32] |
Lactobacillus rhamnosus GG and L. casei Shirota | Human and animal epithelial cell lines | Rotavirus Transmissible gastroenteritis virus | ↑ Release of ROS. Attachment to cell line was varied. ↑ The integrity of the monolayer. | [33] |
Model System | Probiotic(s) | Duration of Probiotic Exposure | Findings | Ref. |
---|---|---|---|---|
BALB/c mice | Lactobacillus rhamnosus GG | 3 days (pre-exposure) | Activates the lung natural killer ↑ Cell-mediated immune responses | [34] |
BALB/c mice | L. rhamnosus GG and Lactobacillus gasseri TMC0356 | 19 days (pre-exposure) | ↓ Clinical symptom scores ↓ Pulmonary virus titers | [35] |
BALB/c mice | Lactobacillus plantarum DK119 | Oral administration for 10 days (pre-exposure) and 14 days (post exposure) | ↓ lung virus loads ↑ Cytokines IFN-γ and IL-12 | [36] |
BALB/c mice | L.plantarum (Lp) heat-killed LP (nF1) | 14 days (pre-exposure) and 14 days (post exposure) | ↓ viral replication in the lungs of mice ↑ number of days of survival | [37] |
BALB/c mice | Lactobacillusdelbrueckii ssp. bulgaricus OLL1073R-1 | 21 days (pre-exposure) | ↑ Anti-influenza virus IgA and IgG1 ↑ Natural killer (NK) cell activity | [39] |
BALB/c mice | Lactobacillusbrevis KB290 (KB290) | 14 days (pre-exposure) | ↑ Influenza specific IgA levels↑ Serum interferon-α level | [43] |
C57BL/6N mice | Lactobacillusgasseri SBT2055 (LG2055) | 21 days (pr-exposure) | ↓ Lung virus loads ↑ Expression of antiviral genes Mx1 and Oas1a | [44] |
Gnotobiotic (Gn) pigs | Lactobacillus acidophilus NCFM™ | exposure at 3, 5, 7, 9 and 11 days of age | ↑ Intestinal IgA and IgG ↑ Serum IgA, IgM and IgG titers | [49] |
Subjects | Study Type | Probiotic(s) | Dose & Duration | Findings | Ref. |
---|---|---|---|---|---|
Women (Probiotic group, n = 24; Age = 31.4 ± 8.4 years old) (Control group, n = 27; Age = 32.1 ± 8.3 years old) (with HPV + low-grade squamous intraepithelial lesion) | Controlled pilot study | Lactobacillus casei Shirota | 6 months | ↑ Clearance of cytological abnormalities ↑ HPV clearance rate | [51] |
Women with HPV infection (Probiotic group, n = 62; Control group, n = 59) (Age ~30 to 65 years old) | Randomized, double-blinded, placebo-controlled | Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 | 5.4 × 109 CFU per capsule per day; probiotic intake continued until negative HPV testing | No change in HPV clearance rate. ↓ Mildly abnormal initial cervical smear and unsatisfactory smear. | [52] |
Elderly people (Probiotic group, n = 39; Control group, n = 38) (Average age = 84 years old) | An open case–control | Fermented milk containing L. casei Shirota | 4 × 1010 cells per day; 3 months | ↓ Fever duration ↑ Fecal Bifidobacterium and Lactobacillus load ↓ Fecal Enterobacteriaceae load ↑ Fecal acetic acid content | [53] |
Children (Probiotic group, n = 97 (49 females, 48 males); Age = 3.7 ± 1.3 years old) (Control group, n = 97 (42 females, 55 males); Age = 3.8 ± 1.4 years old) | Randomized, double-blinded, placebo-controlled | Milk containing L. rhamnosus GG | 108 CFU per day (400 mL per child); 28 weeks | ↓ Respiratory symptoms | [54] |
Healthy subjects (Probiotic group, n = 137 (90 females, 47 males); Age = 46.5 years old) (Control group, n = 135 (90 females, 45 males); Age = 43.7 years old) | Randomized, double-blind and placebo-controlled study | Lactobacillus plantarum HEAL 9 and Lactobacillus paracasei 8700:2 | 109 CFU per day; 12 weeks | ↓ Common cold episodes and symptoms ↓ Pharyngeal symptoms ↑ B lymphocytes proliferation | [55] |
Healthy adults (Probiotic group, n = 25 (10 females, 15 males); Control group, n = 25 (9 females, 16 males)) (Age = 33 ± 7.7 years old) | Randomized, double-blinded, placebo-controlled | Lactobacillus fermentum CECT5716 | 1010 CFU per day; 2 weeks before and after vaccination | ↑ Natural killer cells count ↑ T-helper type 1 cytokine concentrations ↑ IgA & IgM ↓ Incidence of an influenza-like illness | [56] |
Healthy adults (Probiotic group, n = 548 (308 females, 240 males); Age = 31.6 years old) (Control group, n = 551 (338 females, 213 males); Age = 31.3 years old) | Randomized, double-blinded, placebo-controlled | Milk containing L. casei 431 | ≥109 CFU per day; 42 days (vaccination after first 21 days) | ↓ Duration of upper RTIs | [57] |
Healthy adults (n = 62 (39 females, 23 males); Age = 26 ± 4 years old) and older (n = 63 (45 females, 18 males); Age = 69 ± 5 years old) subjects | Randomized, double-blinded, placebo-controlled | Bifidobacteriumlongum bv. infantis CCUG 52,486 and gluco-oligosaccharide | 109 CFU per day, and 8 g of prebiotic per day; 8 weeks (vaccination after first 4 weeks) | ↑ Influenza vaccine-specific antibodies | [58] |
Patientsinfected with the H7N9 influenza virus | Retrospective study | Clostridium butyricum, Bacillus subtilis and Enterococcus faecium | 107 CFU/tablet/thrice a day (C. butyricum); (or) 108 CFU/capsule/thrice a day (B. subtilis, and E. faecium) | ↑ Diversity in the microbiota. B. subtilis and E. faecium supplementation ↓ the secondary infection. | [59] |
Healthy men (n = 5) and women (n = 5); (Average age = 44 years old) | Single-arm, controlled study | Bacillus coagulans GBI-306086. | 2 × 109 CFU per day; 30 days | ↑ TNF-α production | [60] |
Older adults (Probiotic group, n = 100 (74 females, 26 males); Age = 85.2 ± 7.1 years old) (Control group, n = 96 (58 females, 38 males); Age = 85.9 ± 7 years old) | Randomized, double-blinded, placebo-controlled pilot study | L. rhamnosus GG | 109 CFU per capsule/2 capsules per day; 6 months | ↓ Respiratory viral infections | [61] |
Pediatric patients with viral gastroenteritis (Probiotic group, n = 13 (6 females, 7 males); Age range = 3 to 59 months old) (Control group, n = 16 (5 females, 11 males); Age range = 5 to 73 months old) | Randomized, double-blinded, placebo-controlled | B. longum, Bifidobacteriumlactis, L. rhamnosus, L. plantarum, Pediococcus pentosaceus and Lactobacillus acidophilus | 109 CFU (108 CFU/each strain) per sachet, twice a day; 1 week | ↓ Duration of diarrhea | [62] |
Children with acute rotaviral gastroenteritis (Low dose probiotic group, n = 9; High dose probiotic group, n = 8; Control group, n = 6) (Average age = 33.2 months old; 10 females, 13 males) | Open-label randomized trial | L. rhamnosus 35 | 2 or 6 × 108 CFU per day; 3 days | ↓ Fecal rotavirus shedding | [63] |
Children (Standard therapy + probiotic group, n = 40; Control (standard therapy + placebo) group, n = 40) (Age = 3 to 36 months old) | Randomized, double-blinded, placebo-controlled | Bifilac™ | 1 sachet, 3 times per day; 14 days | ↓ Episodes and duration of diarrhea ↓ Degree of dehydration ↓ Duration of rotaviral shedding | [64] |
Preterm infants (Probiotic group, n = 21 (7 females, 14 males); Prebiotic group, n = 23 (12 females, 11 males); Placebo group, n = 24 (5 females, 19 males)) | Randomized, placebo-controlled trial | L. rhamnosus GG, galactooligosaccharideand polydextrose mixture | Probiotic dose = 1 × 109 CFU per day (for 30 days) and 2 × 109 CFU per day (for 31–60 days);Prebiotic dose = 1 × 600 mg/day (for 30 days) and 2 × 600 mg/day (for 31–60 days) | ↓ Incidence of RTIs | [65] |
Healthy subjects (Probiotic group, n = 58 (39 females, 19 males); Age = 22 ± 6 years old) (Control group, n = 57 (33 females, 24 males); Age = 23 ± 7 years old) | Randomized, double-blinded, placebo-controlled | Bifidobacterium animalis subsp. lactis Bl-04 | 2 × 109 CFU; 28 days | ↓ CXCL8 response to rhinovirus infection. ↓ Nasal lavage virus titer and shedding of virus in nasal secretions. | [66] |
Endurance athletes (Probiotic group, n = 126 (53 females, 73 males); Age = 20.3 ± 0.2) (Control group, n = 117 (48 females, 69 males); Age = 20.6 ± 0.2) | Randomized, double-blinded, placebo-controlled | L. casei Shirota | 6.5 × 109 CFU per day; 20 weeks | ↓ Plasma CMV and EBV antibody titers | [67] |
HIV patients (Probiotic group, n = 22 (2 females, 20 males); Age = 49.45 ± 7.75 years old) (Control group, n = 22 (5 females, 17 males); Age = 45.5 ± 7.75 years old) | Randomized, double-blinded, placebo-controlled | Saccharomyces boulardii | 6 × 107 live cells per capsule/2 capsules 3 times per day; 12 weeks | ↓ Plasma levels of Lipopolysaccharide-binding protein, and Il-6 | [68] |
HIV patients (Probiotic group, n = 22 (2 females, 20 males); Age = 49.45 ± 7.75 years old) (Control group, n = 22 (5 females, 17 males); Age = 45.5 ± 7.75 years old) | Randomized, double-blinded, placebo-controlled | S. boulardii | 56.5 mg live cells per capsule/2 capsules 3 times per day; 12 weeks | ↓ Load of Clostridiaceae family. | [69] |
HSV-2 patients (n = 53) | Randomized, double-blinded, placebo-controlled | Lactobacillus brevis strains | 2 × 109 CFU per capsule/2 capsules per day; 6 months | ↓ Recurrence genital HSV-2 infection. | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesika, P.; Sivamaruthi, B.S.; Thangaleela, S.; Chaiyasut, C. The Antiviral Potential of Probiotics—A Review on Scientific Outcomes. Appl. Sci. 2021, 11, 8687. https://doi.org/10.3390/app11188687
Kesika P, Sivamaruthi BS, Thangaleela S, Chaiyasut C. The Antiviral Potential of Probiotics—A Review on Scientific Outcomes. Applied Sciences. 2021; 11(18):8687. https://doi.org/10.3390/app11188687
Chicago/Turabian StyleKesika, Periyanaina, Bhagavathi Sundaram Sivamaruthi, Subramanian Thangaleela, and Chaiyavat Chaiyasut. 2021. "The Antiviral Potential of Probiotics—A Review on Scientific Outcomes" Applied Sciences 11, no. 18: 8687. https://doi.org/10.3390/app11188687
APA StyleKesika, P., Sivamaruthi, B. S., Thangaleela, S., & Chaiyasut, C. (2021). The Antiviral Potential of Probiotics—A Review on Scientific Outcomes. Applied Sciences, 11(18), 8687. https://doi.org/10.3390/app11188687