Pyrolysis of Mixed Plastic Waste: II. Artificial Neural Networks Prediction and Sensitivity Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
2.2. Topology of ANNs
3. Results and Discussion
3.1. Raw Data
3.2. Performance of the Developed ANN Model
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; VanWoerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; The World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Ouda, O.K.M.; Cekirge, H.M.; Raza, S.A. An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Convers. Manag. 2013, 75, 402–406. [Google Scholar] [CrossRef]
- Nizami, A.S.; Ouda, O.K.M.; Rehan, M.; El-Maghraby, A.M.O.; Gardy, J.; Hassanpour, A.; Kumar, S.; Ismail, I.M.I. The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy 2016, 108, 162–171. [Google Scholar] [CrossRef]
- Silvarrey, L.S.D.; Phan, A.N. Kinetic study of municipal plastic waste. Int. J. Hydrogen Energy 2016, 41, 16352–16364. [Google Scholar] [CrossRef] [Green Version]
- Constantinescu, M.; Bucura, F.; Ionete1, R.E.; Niculescu, V.C.; Ionete, E.I.; Zaharioiu, A.; Oancea, S.; Miricioiu, M.G. Comparative study on plastic materials as a new source of energy. Mater. Plast. 2019, 56, 41–46. [Google Scholar] [CrossRef]
- Constantinescu, M.; Bucura, F.; Ionete1, R.E.; Ebrasu, D.I.; Sandru, C.; Zaharioiu, A.; Marin, F.; Miricioiu, M.G.; Niculescu, V.C.; Oancea, S.; et al. From plastic to fuel—New challenges. Mater. Plast. 2019, 56, 721–729. [Google Scholar] [CrossRef]
- Jan, M.R.; Shah, J.; Gulab, H. Catalytic conversion of waste high-density polyethylene into useful hydrocarbons. Fuel 2013, 105, 595–602. [Google Scholar] [CrossRef]
- Conesa, J.A.; Caballero, J.A.; Reyes-Labarta, J.A. Artificial neural network for modelling thermal decompositions. J. Anal. Appl. Pyrolysis 2004, 71, 343–352. [Google Scholar] [CrossRef]
- Bezerra, E.M.; Bento, M.S.; Rocco, J.A.F.F.; Iha, K.; Lourenço, V.L.; Pardini, L.C. Artificial neural network (ANN) prediction of kinetic parameters of (CRFC) composites. Comput. Mater. Sci. 2008, 44, 656–663. [Google Scholar] [CrossRef]
- Burgaz, E.; Yazici, M.; Kapusuz, M.; Alisira, S.H.; Ozcan, H. Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim. Acta 2014, 575, 159–166. [Google Scholar] [CrossRef]
- Yıldız, Z.; Uzun, H.; Ceylan, S.; Topcu, Y. Application of artificial neural networks to co-combustion of hazelnut husk–lignite coal blends. Bioresour. Technol. 2016, 200, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Çepelioĝullar, Ö.; Mutlu, İ.; Yaman, S.; Haykiri-Acma, H. A study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application. J. Anal. Appl. Pyrolysis 2016, 122, 84–94. [Google Scholar] [CrossRef]
- Charde, S.J.; Sonawane, S.S.; Sonawane, S.H.; Shimpi, N.G. Degradation kinetics of polycarbonate composites: Kinetic parameters and artificial neural network. Chem. Biochem. Eng. Q. 2018, 32, 151–165. [Google Scholar] [CrossRef]
- Chen, J.; Xie, C.; Liu, J.; He, Y.; Xie, W.; Zhang, X.; Chang, K.; Kuo, J.; Sun, J.; Zheng, L.; et al. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresour. Technol. 2018, 250, 230–238. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Taqvi, S.A.; Naqvi, M.; Niazi, M.B.K.; Noor, T.; Farooq, W. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel 2018, 233, 529–538. [Google Scholar] [CrossRef]
- Bong, J.T.; Loy, A.C.M.; Chin, B.L.F.; Lam, M.K.; Tang, D.K.H.; Lim, H.Y.; Chai, Y.H.; Yusup, S. Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst. Energy 2020, 207, 118289. [Google Scholar] [CrossRef]
- Dubdub, I.; Al-Yaari, M. Pyrolysis of mixed plastic waste: I. kinetic study. Materials 2020, 13, 4912. [Google Scholar] [CrossRef] [PubMed]
- Dubdub, I.; Al-Yaari, M. Pyrolysis of low density polyethylene: Kinetic study using TGA data and ANN prediction. Polymers 2020, 12, 891. [Google Scholar] [CrossRef] [Green Version]
- Al-Yaari, M.; Dubdub, I. Application of artificial neural networks to predict the catalytic pyrolysis of HDPE using non-isothermal TGA data. Polymers 2020, 2, 1813. [Google Scholar] [CrossRef] [PubMed]
- Sathiya Prabhakaran, S.P.; Swaminathan, G.; Viraj, V.J. Thermogravimetric analysis of hazardous waste: Pet-coke, by kinetic models and Artificial neural network modeling. Fuel 2021, 287, 119470. [Google Scholar] [CrossRef]
- Liew, J.X.; Loy, A.C.M.; Chin, B.L.F.; AlNouss, A.; Shahbaz, M.; Al-Ansari, T.; Govindan, R.; Chai, Y.H. Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renew. Energy 2021, 170, 948–963. [Google Scholar] [CrossRef]
- Bar, N.; Bandyopadhyay, T.K.; Biswas, M.N.; Das, S.K. Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components. J. Pet. Sci. Eng. 2010, 71, 187. [Google Scholar] [CrossRef]
- Al-Wahaibi, T.; Mjalli, F.S. Prediction of horizontal oil-water flow pressure gradient using artificial intelligence techniques. Chem. Eng. Commun. 2014, 201, 209. [Google Scholar] [CrossRef]
- Quantrille, T.E.; Liu, Y.A. Artificial Intelligence in Chemical Engineering; Elsevier Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Osman, E.A.; Aggour, M.A. Artificial neural network model for accurate prediction of pressure drop in horizontal and near-horizontal-multiphase flow. Pet. Sci. Technol. 2002, 20, 1–15. [Google Scholar] [CrossRef]
- Qinghua, W.; Honglan, Z.; Wei, L.; Junzheng, Y.; Xiaohong, W.; Yan, W. Experimental study of horizontal gas-liquid two-phase flow in two medium-diameter pipes and prediction of pressure drop through BP neural networks. Int. J. Fluid Mach. Syst. 2018, 11, 255–264. [Google Scholar] [CrossRef]
- Halali, M.A.; Azari, V.; Arabloo, M.; Mohammadi, A.H.; Bahadori, A. Application of a radial basis function neural network to estimate pressure gradient in water–oil pipelines. J. Taiwan Inst. Chem. Eng. 2016, 58, 189–202. [Google Scholar] [CrossRef]
- Govindan, B.; Jakka, S.C.B.; Radhakrishnan, T.K.; Tiwari, A.K.; Sudhakar, T.M.; Shanmugavelu, P.; Kalburgi, A.K.; Sanyal, A.; Sarkar, S. Investigation on kinetic parameters of combustion and oxy-combustion of calcined pet coke employing thermogravimetric analysis coupled to artificial neural network modeling. Energy Fuels 2018, 32, 3995–4007. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox TM User’s Guide; MathWorks: Natick, MA, USA, 2018. [Google Scholar]
- Sun, Y.; Liu, L.; Wang, Q.; Yang, X.; Tu, X. Pyrolysis products from industrial waste biomass based on a neural network model. J. Anal. Appl. Pyrolysis 2016, 120, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.S.; Mehmood, M.A.; Taqvi, S.T.H.; Elkamel, A.; Liu, C.-G.; Xu, J.; Rahimuddin, S.A.; Gull, M. Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresour. Technol. 2017, 245, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Aydinli, B.; Caglar, A.; Pekol, S.; Karaci, A. The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network. Energy Explor. Exploit. 2017, 35, 698–712. [Google Scholar] [CrossRef]
- Alkasseh, J.M.; Adlan, M.N.; Abustan, I.; Aziz, H.A.; Hani, A.B. Applying minimum night flow to estimate water loss using statistical modeling: A case study in Kinta Valley, Malaysia. Water Resour. Manag. 2013, 27, 1439–1455. [Google Scholar] [CrossRef]
- Chok, N.S. Pearson’s Versus Spearman’s and Kendall’s Correlation Coefficients for Continuous Data [MSc Dissertation]; Chokns_etd2010.pdf (pitt.edu); University of Pittsburgh: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Faisal, A.A.; Naji, L.A. Simulation of ammonia nitrogen removal from simulated wastewater by sorption onto waste foundry sand using artificial neural network. Assoc. Arab Univ. J. Eng. Sci. 2019, 26, 28–34. [Google Scholar] [CrossRef]
- Rukthong, W.; Weerapakkaroon, W.; Wongsiriwan, U.; Piumsomboon, P.; Chalermsinsuwan, B. Integration of computational fluid dynamics simulation and statistical factorial experimental design of thick-wall crude oil pipeline with heat loss. Adv. Eng. Softw. 2015, 86, 49–54. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Naderpour, H.; Noroozi, R. Determining the relative importance of parameters affecting concrete pavement thickness. J. Rehabil. Civil Eng. 2015, 3, 61–73. [Google Scholar] [CrossRef]
- Shojaeefard, M.H.; Akbari, M.; Tahani, M.; Farhani, F. Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminum to brass. Adv. Mater. Sci. Eng. 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dubdub, I.; Rushd, S.; Al-Yaari, M.; Gadri, E. Application of ANN to model the friction losses in lubricated pipe flow of non-conventional oils. Chem. Eng. Commun. 2020. [Google Scholar] [CrossRef]
- Baak, M.; Koopman, R.; Snoek, H.; Klous, S. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Comput. Stat. Data Anal. 2020, 152, 107043. [Google Scholar] [CrossRef]
- Prion, S.; Haerling, K.S. Making sense of methods and measurement: Pearson product-moment correlation coefficient. Clin. Simul. Nurs. 2014, 10, 587–588. [Google Scholar] [CrossRef]
- Johnson, V.E. Revised standards for statistical evidence. Proc. Natl. Acad. Sci. USA 2013, 110, 19313–19317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzywinski, M.; Altman, N. Points of significance: Significance, P values and t-tests. Nat. Methods 2013, 10, 1041–1042. [Google Scholar] [CrossRef] [Green Version]
- Sham, P.C.; Purcell, S.M. Statistical power and significance testing in large-scale genetic studies. Nat. Rev. Genet. 2014, 15, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Boston, MA, USA, 2011; pp. 300–344. [Google Scholar]
- Kempel, F.; Schartel, B.; Linteris, G.T.; Stanislav, I.; Stoliarov, R.E.; Lyon, R.N.; Walters, A.H. Prediction of the mass loss rate of polymer materials: Impact of residue formation. Combust. Flame 2012, 159, 2974–2984. [Google Scholar] [CrossRef]
- Stoliarov, S.I.; Walters, R.N. Determination of the heats of gasification of polymers using differential scanning calorimetry. Polym. Degrad. Stab. 2008, 93, 422–427. [Google Scholar] [CrossRef]
Plastic | Proximate Analysis, wt % | Ultimate Analysis, wt % | |||||
---|---|---|---|---|---|---|---|
Moisture | Volatile | Ash | C | H | N | S | |
PS | 0.235 | 99.590 | 0.175 | 90.47 | 9.43 | 0.00 | 0.08 |
PP | 0.076 | 99.630 | 0.294 | 85.00 | 14.73 | 0.04 | 0.23 |
LDPE | 0.199 | 99.653 | 0.148 | 83.00 | 16.75 | 0.00 | 0.25 |
HDPE | 0.405 | 99.377 | 0.218 | 82.77 | 16.92 | 0.00 | 0.29 |
Test No. | Weight Fractions | |||
---|---|---|---|---|
PP | PS | HDPE | LDPE | |
1 | 0 | 0.7 | 0.3 | 0 |
2 | 0.3 | 0.7 | 0 | 0 |
3 | 0 | 0.7 | 0 | 0.3 |
4 | 0 | 0.3 | 0 | 0.7 |
5 | 0.3 | 0 | 0 | 0.7 |
6 | 0 | 0 | 0.3 | 0.7 |
7 | 0 | 0 | 0.7 | 0.3 |
8 | 0.3 | 0 | 0.7 | 0 |
9 | 0 | 0.3 | 0.7 | 0 |
10 | 0.7 | 0 | 0 | 0.3 |
11 | 0.7 | 0 | 0.3 | 0 |
12 | 0.7 | 0.3 | 0 | 0 |
13 | 0.333 | 0.333 | 0.333 | 0 |
14 | 0 | 0.484 | 0.325 | 0.192 |
15 | 0.167 | 0.484 | 0 | 0.349 |
16 | 0.295 | 0 | 0.55 | 0.155 |
17 | 0.25 | 0.25 | 0.25 | 0.25 |
Test No. | Training Stage No. | Simulation Stage No. | Test No. | Training Stage No. | Simulation Stage No. |
---|---|---|---|---|---|
1 | 29 | 2 | 10 | 32 | 2 |
2 | 32 | 2 | 11 | 32 | 2 |
3 | 30 | 2 | 12 | 32 | 2 |
4 | 33 | 2 | 13 | 32 | 2 |
5 | 33 | 2 | 14 | 33 | 2 |
6 | 33 | 2 | 15 | 32 | 2 |
7 | 31 | 2 | 16 | 29 | 2 |
8 | 33 | 2 | 17 | 25 | 2 |
9 | 33 | 2 | |||
Total | 534 | 34 |
Set | Training Data Set | |||
---|---|---|---|---|
R | RMSE | MAE | MBE | |
Training | 0.99994 | 0.37553 | 0.20154 | −0.00257 |
Validation | 0.99992 | 0.37033 | 0.19197 | −0.04208 |
Test | 0.99995 | 0.33777 | 0.18669 | 0.021799 |
All | 0.99994 | 0.36933 | 0.19788 | −0.00484 |
Parameter | Value |
---|---|
Network topology | 5-15-10-1 |
Input parameters | Temperature (K), PP composition (wt fraction), PS composition (wt fraction), HDPE composition (wt fraction), and LDPE composition (wt fraction) |
Output parameter | Weight left % |
Training function | Levenberg–Marquardt |
Transfer function | Tangent sigmoid (TANSIG) |
Performance function | Mean squared error (MSE) |
Error tolerance | 0.001 |
No. of iterations | 1000 |
Minimum gradient | 1 × 10−7 |
Validation check | 6 |
Test No. | ANN Input Variables | ANN Output-Targeted Values | ||||
---|---|---|---|---|---|---|
Weight Fractions | Temp. (K) | Mass Left (wt %) | ||||
PP | PS | HDPE | LDPE | |||
1 | 0.33 | 0.33 | 0.33 | 0 | 588 | 99.5 |
2 | 0.33 | 0.33 | 0.33 | 0 | 648 | 95.9 |
3 | 0.3 | 0.7 | 0 | 0 | 663 | 96.6 |
4 | 0.3 | 0.7 | 0 | 0 | 678 | 94 |
5 | 0 | 0.7 | 0 | 0.3 | 648 | 90.5 |
6 | 0 | 0.7 | 0 | 0.3 | 678 | 77.5 |
7 | 0 | 0.3 | 0 | 0.7 | 693 | 93 |
8 | 0 | 0.3 | 0 | 0.7 | 723 | 67.3 |
9 | 0.3 | 0 | 0 | 0.7 | 693 | 90.5 |
10 | 0.3 | 0 | 0 | 0.7 | 738 | 61 |
11 | 0 | 0 | 0.3 | 0.7 | 738 | 89.7 |
12 | 0 | 0 | 0.3 | 0.7 | 753 | 77.9 |
13 | 0 | 0 | 0.7 | 0.3 | 693 | 85.7 |
14 | 0 | 0 | 0.7 | 0.3 | 738 | 45.3 |
15 | 0.3 | 0 | 0.7 | 0 | 723 | 79.7 |
16 | 0.3 | 0 | 0.7 | 0 | 768 | 18.8 |
17 | 0 | 0.3 | 0.7 | 0 | 738 | 70.8 |
18 | 0.7 | 0 | 0 | 0.3 | 678 | 92.6 |
19 | 0.7 | 0 | 0 | 0.3 | 753 | 2.68 |
20 | 0.7 | 0 | 0.3 | 0 | 708 | 88.7 |
21 | 0.7 | 0 | 0.3 | 0 | 753 | 34.3 |
22 | 0.7 | 0.3 | 0 | 0 | 723 | 78 |
23 | 0.7 | 0.3 | 0 | 0 | 753 | 41.7 |
24 | 0 | 0.7 | 0.3 | 0 | 724.1 | 63.0 |
25 | 0 | 0.7 | 0.3 | 0 | 744.7 | 30.4 |
26 | 0 | 0.484 | 0.325 | 0.192 | 693 | 90.4 |
27 | 0 | 0.484 | 0.325 | 0.192 | 768 | 14 |
28 | 0.167 | 0.484 | 0 | 0.349 | 726.2 | 65.7 |
29 | 0.167 | 0.484 | 0 | 0.349 | 753.6 | 27.9 |
30 | 0.295 | 0 | 0.55 | 0.155 | 765.9 | 52.5 |
31 | 0.295 | 0 | 0.55 | 0.155 | 785.4 | 20.7 |
32 | 0.25 | 0.25 | 0.25 | 0.25 | 727.4 | 68.4 |
33 | 0.25 | 0.25 | 0.25 | 0.25 | 744.0 | 49.5 |
34 | 0.7 | 0 | 0 | 0.3 | 678 | 92.6 |
R | RMSE | MAE | MBE |
---|---|---|---|
0.99678 | 2.73709 | 1.85179 | −0.27745 |
Input Parameter | PP (wt %) | PS (wt %) | HDPE (wt %) | LDPE (wt %) | T(K) |
---|---|---|---|---|---|
SAI | 0.038 | −0.088 | 0.051 | 0.001 | −0.732 |
Input Parameter | PP (wt %) | PS (wt %) | HDPE (wt %) | LDPE (wt %) | T(K) |
---|---|---|---|---|---|
p-value | 0.15 | 0.16 | 0.15 | 0.15 | 2.69 × 10−90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubdub, I.; Al-Yaari, M. Pyrolysis of Mixed Plastic Waste: II. Artificial Neural Networks Prediction and Sensitivity Analysis. Appl. Sci. 2021, 11, 8456. https://doi.org/10.3390/app11188456
Dubdub I, Al-Yaari M. Pyrolysis of Mixed Plastic Waste: II. Artificial Neural Networks Prediction and Sensitivity Analysis. Applied Sciences. 2021; 11(18):8456. https://doi.org/10.3390/app11188456
Chicago/Turabian StyleDubdub, Ibrahim, and Mohammed Al-Yaari. 2021. "Pyrolysis of Mixed Plastic Waste: II. Artificial Neural Networks Prediction and Sensitivity Analysis" Applied Sciences 11, no. 18: 8456. https://doi.org/10.3390/app11188456
APA StyleDubdub, I., & Al-Yaari, M. (2021). Pyrolysis of Mixed Plastic Waste: II. Artificial Neural Networks Prediction and Sensitivity Analysis. Applied Sciences, 11(18), 8456. https://doi.org/10.3390/app11188456