Spatiotemporal Characteristics of Radio Frequency Dielectric Barrier Glow Discharge at Atmospheric Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Facility
2.2. Experimental Method
2.3. Optical Diagnostics with ICCD Photos
3. Results and Discussion
3.1. ICCD Diagnostics with Exposure Time of 100 μs
3.2. ICCD Diagnostics of Plasma in One Cycle with Exposure Time of 2 ns
3.3. Optical Emission Spectroscopy Diagnostics and the Charge Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, J.R. Industrial Plasma Engineering; IOP: Philadelphia, PA, USA, 1995. [Google Scholar]
- Moisan, M.; Barbeau, J.; Moreau, S.; Pelletier, J.; Tabrizian, M.; Yahia, L. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 2001, 226, 1–21. [Google Scholar] [CrossRef]
- Arkhipenko, V.; Callegari, T.; Safronau, Y.; Simonchik, L. Atmospheric-Pressure Air Glow Discharge in a Three-Electrode Configuration. IEEE Trans. Plasma Sci. 2009, 37, 1297–1304. [Google Scholar] [CrossRef]
- Bruggeman, P.; Liu, J.; Degroote, J.; Kong, M.G.; Vierendeels, J.; Leys, C. Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems. J. Phys. D Appl. Phys. 2008, 41, 215201. [Google Scholar] [CrossRef]
- Muñoz, J.; Calzada, M.D. Experimental research on surface wave Ar–He discharges at atmospheric pressure. J. Phys. D Appl. Phys. 2008, 41, 135203. [Google Scholar] [CrossRef]
- Shi, J.J.; Liu, D.W.; Kong, M.G. Effects of Dielectric Barriers in Radio-Frequency Atmospheric Glow Discharges. IEEE Trans. Plasma Sci. 2007, 35, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, H.-P.; Sun, W.-T.; Wang, S.; Tian, Z.; Bao, C.-Y. Discharge features of radio-frequency, atmospheric-pressure cold plasmas under an intensified local electric field. J. Phys. D: Appl. Phys. 2008, 41, 202001. [Google Scholar] [CrossRef]
- Shi, J.J.; Kong, M. Expansion of the plasma stability range in radio-frequency atmospheric-pressure glow discharges. Appl. Phys. Lett. 2005, 87, 201501. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.; Cao, Z.; Kong, M. Atmospheric Dielectric-Barrier Discharges Scalable From 1 mm to 1 m. IEEE Trans. Plasma Sci. 2008, 36, 1314–1315. [Google Scholar] [CrossRef]
- Shi, J.J.; Kong, M. Radio-frequency dielectric-barrier glow discharges in atmospheric argon. Appl. Phys. Lett. 2007, 90, 111502. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.; Iza, F.; Kong, M. Atmospheric glow discharges from the high-frequency to very high-frequency bands. Appl. Phys. Lett. 2008, 93, 251502. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, Z.W.; Cai, H.P.; Chen, Q. Restraint effect of filaments on applied voltage in atmospheric pressure glow discharge. Plasma Sci. Technol. 2011, 14, 28–31. [Google Scholar] [CrossRef]
- Iza, F.; Lee, J.K.; Kong, M. Electron Kinetics in Radio-Frequency Atmospheric-Pressure Microplasmas. Phys. Rev. Lett. 2007, 99, 075004. [Google Scholar] [CrossRef] [Green Version]
- Gandhiraman, R.P.; Singh, E.; Diaz-Cartagena, D.C.; Nordlund, D.; Koehne, J.; Meyyappan, M. Plasma jet printing for flexible substrates. Appl. Phys. Lett. 2016, 108, 123103. [Google Scholar] [CrossRef]
- Qazi, H.I.A.; Nie, Q.-Y.; Li, H.-P.; Zhang, X.-F.; Bao, C.-Y. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges. Phys. Plasmas 2015, 22, 123512. [Google Scholar] [CrossRef]
- Tatarova, E.; Bundaleska, N.; Sarrette, J.P.; Ferreira, C.M. Plasmas for environmental issues: From hydrogen production to 2D materials assembly. Plasma Sources Sci. Technol. 2014, 23, 063002. [Google Scholar] [CrossRef]
- Hussain, S.; Qazi, H.I.A.; Malik, A.A.; Badar, M.A. Glow modes in radio frequency atmospheric discharge operating with and without anodized electrodes. IEEE Trans. Plasma Sci. 2014, 42, 2410–2411. [Google Scholar] [CrossRef]
- Shi, J.J.; Liu, D.W.; Kong, M. Mitigating plasma constriction using dielectric barriers in radio-frequency atmospheric pressure glow discharges. Appl. Phys. Lett. 2007, 90, 31505. [Google Scholar] [CrossRef] [Green Version]
- Kunhardt, E.E. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Trans. Plasma Sci. 2000, 28, 189–200. [Google Scholar] [CrossRef]
- Li, B.; Chen, Q.; Liu, Z.W. A large gap of radio frequency dielectric barrier atmospheric pressure glow discharge. Appl. Phys. Lett. 2010, 96. [Google Scholar] [CrossRef]
- Li, X.; LIU, R.; Gong, D.; Li, X.; Ren, C.; Jia, P. Influence of external parameters on nonlinear behaviors in a helium dielectric-barrier discharge excited by a modulated voltage. Phys. Plasmas 2019, 26, 23514. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Q.; Dai, D.; Zhang, Y.; Li, L. A practical method for controlling the asymmetric mode of atmospheric dielectric barrier discharges. Appl. Sci. 2020, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Nishime, T.M.C.; Wannicke, N.; Horn, S.; Weltmann, K.-D.; Brust, H. A Coaxial dielectric barrier discharge reactor for treatment of sinter sheat seeds. Appl. Sci. 2020, 10, 7133. [Google Scholar] [CrossRef]
λ/nm | Configurations | Aki/107s−1 | Ei −Ek (cm−1) | |
---|---|---|---|---|
ArⅠ | 706 | 3s23p5(2P°3/2)4s-3s23p5(2P°1/2)4p | 0.38 | 93,143.7600–107,289.7001 |
ArⅠ | 738 | 3s23p5(2P°3/2)4s-3s23p5(2P°1/2)4p | 0.847 | 93,750.5978–107,289.7001 |
ArⅠ | 751 | 3s23p5(2P°3/2)4s-3s23p5(2P°3/2)4p | 4.02 | 93,750–107,054.2720 |
ArⅠ | 794 | 3s23p5(2P°1/2)4s-3s23p5(2P°1/2)4p | 1.86 | 94,553.6652–107,131.7086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Sun, J.; Sun, R.; Pan, J.; Wang, L.; Chen, C.; Chen, Q.; Liu, Z. Spatiotemporal Characteristics of Radio Frequency Dielectric Barrier Glow Discharge at Atmospheric Pressure. Appl. Sci. 2021, 11, 8430. https://doi.org/10.3390/app11188430
Li S, Sun J, Sun R, Pan J, Wang L, Chen C, Chen Q, Liu Z. Spatiotemporal Characteristics of Radio Frequency Dielectric Barrier Glow Discharge at Atmospheric Pressure. Applied Sciences. 2021; 11(18):8430. https://doi.org/10.3390/app11188430
Chicago/Turabian StyleLi, Sen, Jiazhen Sun, Rui Sun, Jie Pan, Lin Wang, Chen Chen, Qiang Chen, and Zhongwei Liu. 2021. "Spatiotemporal Characteristics of Radio Frequency Dielectric Barrier Glow Discharge at Atmospheric Pressure" Applied Sciences 11, no. 18: 8430. https://doi.org/10.3390/app11188430
APA StyleLi, S., Sun, J., Sun, R., Pan, J., Wang, L., Chen, C., Chen, Q., & Liu, Z. (2021). Spatiotemporal Characteristics of Radio Frequency Dielectric Barrier Glow Discharge at Atmospheric Pressure. Applied Sciences, 11(18), 8430. https://doi.org/10.3390/app11188430