Optimal Coordination of Over-Current Relays in Microgrids Using Principal Component Analysis and K-Means
Abstract
:1. Introduction
2. Mathematical Formulation
3. K-Means Clustering via PCA
3.1. Principal Component Analysis
3.2. K-Means Clustering Algorithm
4. Methodology
5. Results
5.1. Results Considering a Single Set of Parameters for All Scenarios
5.2. Results Using the K-Means Clustering Algorithm
5.3. Results Using Principal Component Analysis
5.4. Results with K-Means Clustering via PCA
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giraldo, J.S.; Castrillon, J.A.; López, J.C.; Rider, M.J.; Castro, C.A. Microgrids energy management using robust convex programming. IEEE Trans. Smart Grid 2018, 10, 4520–4530. [Google Scholar] [CrossRef]
- Lasseter, R.H.; Piagi, P. Microgrid: A conceptual solution. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; Volume 6, pp. 4285–4291. [Google Scholar]
- Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Vergara, P.P.; Lopez, J.C.; Rider, M.J.; Da Silva, L.C. Optimal operation of unbalanced three-phase islanded droop-based microgrids. IEEE Trans. Smart Grid 2017, 10, 928–940. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Abyaneh, H.A.; Sadeghi, S.H.H.; Razavi, F.; Nasiri, A. An overview of microgrid protection methods and the factors involved. Renew. Sustain. Energy Rev. 2016, 64, 174–186. [Google Scholar] [CrossRef]
- Telukunta, V.; Pradhan, J.; Agrawal, A.; Singh, M.; Srivani, S.G. Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE J. Power Energy Syst. 2017, 3, 365–379. [Google Scholar] [CrossRef]
- de Souza, A.C.Z.; Castilla, M. Microgrids Design and Implementation; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gomes, M.; Coelho, P.; Moreira, C. Microgrid Protection Schemes. In Microgrids Design and Implementation; Springer: Berlin/Heidelberg, Germany, 2019; pp. 311–336. [Google Scholar]
- Bui, D.M.; Chen, S.L. Fault protection solutions appropriately proposed for ungrounded low-voltage AC microgrids: Review and proposals. Renew. Sustain. Energy Rev. 2017, 75, 1156–1174. [Google Scholar] [CrossRef]
- Jaramillo Serna, J.d.J.; López-Lezama, J.M. Alternative Methodology to Calculate the Directional Characteristic Settings of Directional Overcurrent Relays in Transmission and Distribution Networks. Energies 2019, 12, 3779. [Google Scholar] [CrossRef] [Green Version]
- Saad, S.M.; El-Naily, N.; Mohamed, F.A. A new constraint considering maximum PSM of industrial over-current relays to enhance the performance of the optimization techniques for microgrid protection schemes. Sustain. Cities Soc. 2019, 44, 445–457. [Google Scholar] [CrossRef]
- El-Naily, N.; Saad, S.M.; Hussein, T.; Mohamed, F.A. A novel constraint and non-standard characteristics for optimal over-current relays coordination to enhance microgrid protection scheme. IET Gener. Transm. Distrib. 2019, 13, 780–793. [Google Scholar] [CrossRef]
- Zeineldin, H.H.; Mohamed, Y.A.R.I.; Khadkikar, V.; Pandi, V.R. A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems. IEEE Trans. Smart Grid 2013, 4, 1523–1532. [Google Scholar] [CrossRef]
- Ehrenberger, J.; Švec, J. Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems. Energies 2017, 10, 1452. [Google Scholar] [CrossRef] [Green Version]
- Saleh, K.A.; Zeineldin, H.H.; El-Saadany, E.F. Optimal Protection Coordination for Microgrids Considering N —1 Contingency. IEEE Trans. Ind. Inform. 2017, 13, 2270–2278. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent relays in interconnected networks and multi-DER microgrids. IET Gener. Transm. Distrib. 2018, 12, 2871–2886. [Google Scholar] [CrossRef]
- Alam, M.N. Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Trans. Ind. Informatics 2018, 15, 64–73. [Google Scholar] [CrossRef]
- Lin, H.; Sun, K.; Tan, Z.H.; Liu, C.; Guerrero, J.M.; Vasquez, J.C. Adaptive protection combined with machine learning for microgrids. IET Gener. Transm. Distrib. 2019, 13, 770–779. [Google Scholar] [CrossRef]
- Samadi, A.; Chabanloo, R.M. Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups. Int. J. Electr. Power Energy Syst. 2020, 120, 106026. [Google Scholar] [CrossRef]
- Ojaghi, M.; Mohammadi, V. Use of clustering to reduce the number of different setting groups for adaptive coordination of overcurrent relays. IEEE Trans. Power Deliv. 2017, 33, 1204–1212. [Google Scholar] [CrossRef]
- Ghadiri, S.M.E.; Mazlumi, K. Adaptive protection scheme for microgrids based on SOM clustering technique. Appl. Soft Comput. 2020, 88, 106062. [Google Scholar] [CrossRef]
- Barik, T.K.; Centeno, V.A. K-medoids clustering of setting groups in directional overcurrent relays for distribution system protection. In Proceedings of the 2020 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 13–14 July 2020; pp. 1–6. [Google Scholar]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal Coordination of Over-Current Relays in Microgrids Using Unsupervised Learning Techniques. Appl. Sci. 2021, 11. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote. Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Thomas, E.E. Differentiation between“ Bomb” and Ordinary US East Coast Cyclogenesis Using Principal Component Analysis and K-Means Cluster Analysis. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 2020. [Google Scholar]
- Ding, C.; He, X. K-means clustering via principal component analysis. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 29. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Mirjalili, S. Evolutionary Machine Learning Techniques: Algorithms and Applications; Springer Nature: London, UK, 2020. [Google Scholar]
- Chabanloo, R.M.; Maleki, M.G.; Agah, S.M.M.; Habashi, E.M. Comprehensive coordination of radial distribution network protection in the presence of synchronous distributed generation using fault current limiter. Int. J. Electr. Power Energy Syst. 2018, 99, 214–224. [Google Scholar] [CrossRef]
- Alam, M.N. Overcurrent protection of AC microgrids using mixed characteristic curves of relays. Comput. Electr. Eng. 2019, 74, 74–88. [Google Scholar] [CrossRef]
- Dahej, A.E.; Esmaeili, S.; Hojabri, H. Co-optimization of Protection Coordination and Power Quality in Microgrids Using Unidirectional Fault Current Limiters. IEEE Trans. Smart Grid 2017, 9, 5080–5091. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal Coordination of Overcurrent Relays in Microgrids Considering a Non-Standard Characteristic. Energies 2020, 13, 922. [Google Scholar] [CrossRef] [Green Version]
- Pious Akushie, U. Coordination Improvement of Directional Overcurrent Relays in a Microgrid Using Modified Particle Swarm Optimization Algorithm. Int. J. Electr. Components Energy Convers. 2018, 4, 21. [Google Scholar] [CrossRef]
- Yazdaninejadi, A.; Golshannavaz, S.; Nazarpour, D.; Teimourzadeh, S.; Aminifar, F. Dual-setting directional overcurrent relays for protecting automated distribution networks. IEEE Trans. Ind. Inform. 2018, 15, 730–740. [Google Scholar] [CrossRef]
- Tejeswini, M.; Raglend, I.J.; Yuvaraja, T.; Radha, B. An advanced protection coordination technique for solar in-feed distribution systems. Ain Shams Eng. J. 2019, 10, 379–388. [Google Scholar] [CrossRef]
- IEEE. IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book). In IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book]; IEEE: Piscataway, NJ, USA, 2001; pp. 1–710. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
0 [s] | |
2 [s] | |
0.05 | |
1 | |
[A] | |
1.5 [A] | |
1.1 | |
20 |
OS | Grid | CB-1 | CB-2 | DG1 | DG2 | DG3 | DG4 |
---|---|---|---|---|---|---|---|
OS1 | on | open | open | off | off | off | off |
OS2 | on | open | open | on | on | on | on |
OS3 | on | open | open | on | on | off | off |
OS4 | off | open | open | on | on | on | on |
OS5 | on | close | close | off | off | off | off |
OS6 | on | close | close | on | on | on | on |
OS7 | on | close | close | on | on | off | off |
OS8 | off | close | close | on | on | on | on |
OS9 | on | close | open | off | off | off | off |
OS10 | on | close | open | on | on | on | on |
OS11 | on | close | open | on | on | off | off |
OS12 | off | close | open | on | on | on | on |
OS13 | on | open | close | off | off | off | off |
OS14 | on | open | close | on | on | on | on |
OS15 | on | open | close | on | on | off | off |
OS16 | off | open | close | on | on | on | on |
Method | Operation Time (s) | Violations |
---|---|---|
Without clustering | 724.8 | 13 |
Clusters | OS | OT (s) | Viol |
---|---|---|---|
1 | OS4 OS8 OS12 OS16 | 109.15 | 0 |
2 | OS1 OS5 OS9 OS13 OS15 | 113.73 | 2 |
3 | OS6 OS7 OS10 OS11 OS14 | 214.31 | 0 |
4 | OS2 OS3 | 34.28 | 0 |
Total | 471.49 | 2 |
Relay | ipickup | TMS C1 | TMS C2 | TMS C3 | TMS C4 |
---|---|---|---|---|---|
R1 | 200 | 0.3042 | 0.1839 | 0.3587 | 0.1871 |
R2 | 200 | 0.1000 | 0.3979 | 0.2648 | 0.1000 |
R3 | 200 | 0.2171 | 0.1146 | 0.2545 | 0.1000 |
R4 | 200 | 0.2071 | 0.5302 | 0.3971 | 0.2323 |
R5 | 200 | 0.2052 | 0.1000 | 0.1000 | 0.1515 |
R6 | 200 | 0.1789 | 0.6626 | 0.5294 | 0.3646 |
R7 | 1200 | 0.4874 | 0.5344 | 0.4394 | 0.3189 |
R8 | 200 | 0.2454 | 0.1312 | 0.3336 | 0.2500 |
R9 | 200 | 0.2329 | 0.3217 | 0.4413 | 0.1000 |
R10 | 200 | 0.1000 | 0.2601 | 0.3634 | 0.1000 |
R11 | 260 | 0.2628 | 0.1675 | 0.3364 | 0.2666 |
R12 | 200 | 0.1000 | 0.4229 | 0.4713 | 0.1000 |
R13 | 352 | 0.2886 | 0.2514 | 0.4079 | 0.2033 |
R14 | 260 | 0.2523 | 0.3793 | 0.2436 | 0.1415 |
R15 | 220 | 0.1757 | 0.3117 | 0.2487 | 0.2007 |
Clusters | OS | OT (s) | Viol |
---|---|---|---|
1 | OS4 OS8 OS12 OS16 | 109.1561 | 0 |
2 | OS1 OS3 OS13 OS15 | 58.01 | 0 |
3 | OS2 OS5 OS9 OS11 | 126.93 | 2 |
4 | OS6 OS7 OS10 OS14 | 182.85 | 0 |
Total | 476.94 | 2 |
Relay | ipickup | TMS C1 | TMS C2 | TMS C3 | TMS C4 |
---|---|---|---|---|---|
R1 | 200 | 0.3042 | 0.1000 | 0.2016 | 0.2016 |
R2 | 200 | 0.1000 | 0.1762 | 0.3265 | 0.3265 |
R3 | 200 | 0.2171 | 0.3800 | 0.1146 | 0.1146 |
R4 | 200 | 0.2071 | 0.3085 | 0.4588 | 0.4588 |
R5 | 200 | 0.2052 | 0.1000 | 0.1000 | 0.1000 |
R6 | 200 | 0.1789 | 0.4408 | 0.6117 | 0.6117 |
R7 | 1200 | 0.4874 | 0.3678 | 0.5002 | 0.5002 |
R8 | 200 | 0.2454 | 0.2883 | 0.3742 | 0.3742 |
R9 | 200 | 0.2329 | 0.1000 | 0.4576 | 0.4576 |
R10 | 200 | 0.1000 | 0.1762 | 0.4645 | 0.4645 |
R11 | 260 | 0.2628 | 0.2986 | 0.3702 | 0.3702 |
R12 | 200 | 0.1000 | 0.1000 | 0.5587 | 0.5587 |
R13 | 352 | 0.2886 | 0.6904 | 0.2139 | 0.2139 |
R14 | 260 | 0.2523 | 0.9518 | 0.4397 | 0.4397 |
R15 | 220 | 0.1757 | 0.2074 | 0.2779 | 0.2779 |
K-Means as in [20,23] | Proposed (K-Means via PCA) | |||||
---|---|---|---|---|---|---|
Cluster | OS | OT | Viol | OS | OT | Viol |
1 | OS4 OS8 OS12 OS16 | 109.15 | 0 | OS4 OS8 OS12 OS16 | 109.15 | 0 |
2 | OS1 OS5 OS9 OS13 OS15 | 113.73 | 2 | OS1 OS2 OS3 OS13 OS15 | 82.32 | 0 |
3 | OS6 OS7 OS10 OS11 OS14 | 214.31 | 0 | OS5 OS6 OS7 OS10 | 290.37 | 0 |
4 | OS2 OS3 | 34.28 | 0 | OS9 OS11 | 37.10 | 0 |
Total | 471.49 | 2 | 518.94 | 0 |
Relay | ipickup | TMS C1 | TMS C2 | TMS C3 | TMS C4 |
---|---|---|---|---|---|
R1 | 200 | 0.3042 | 0.1871 | 0.4115 | 0.4963 |
R2 | 200 | 0.1000 | 0.1762 | 0.4124 | 0.1000 |
R3 | 200 | 0.2171 | 0.1000 | 0.3073 | 0.4535 |
R4 | 200 | 0.2071 | 0.3085 | 0.5447 | 0.2323 |
R5 | 200 | 0.2052 | 0.1515 | 0.1000 | 0.1000 |
R6 | 200 | 0.1789 | 0.4408 | 0.6770 | 0.4628 |
R7 | 1200 | 0.4874 | 0.3678 | 0.5441 | 0.3976 |
R8 | 200 | 0.2454 | 0.2883 | 0.4985 | 0.2482 |
R9 | 200 | 0.2329 | 0.1000 | 0.5643 | 0.2823 |
R10 | 200 | 0.1000 | 0.2633 | 0.4663 | 0.3384 |
R11 | 260 | 0.2628 | 0.2986 | 0.4739 | 0.1875 |
R12 | 200 | 0.1000 | 0.1000 | 0.6194 | 0.3834 |
R13 | 352 | 0.2886 | 0.2033 | 0.4517 | 0.5216 |
R14 | 260 | 0.2523 | 0.1415 | 0.2974 | 0.6955 |
R15 | 220 | 0.1757 | 0.2074 | 0.3180 | 0.1712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal Coordination of Over-Current Relays in Microgrids Using Principal Component Analysis and K-Means. Appl. Sci. 2021, 11, 7963. https://doi.org/10.3390/app11177963
Saldarriaga-Zuluaga SD, López-Lezama JM, Muñoz-Galeano N. Optimal Coordination of Over-Current Relays in Microgrids Using Principal Component Analysis and K-Means. Applied Sciences. 2021; 11(17):7963. https://doi.org/10.3390/app11177963
Chicago/Turabian StyleSaldarriaga-Zuluaga, Sergio D., Jesús M. López-Lezama, and Nicolás Muñoz-Galeano. 2021. "Optimal Coordination of Over-Current Relays in Microgrids Using Principal Component Analysis and K-Means" Applied Sciences 11, no. 17: 7963. https://doi.org/10.3390/app11177963
APA StyleSaldarriaga-Zuluaga, S. D., López-Lezama, J. M., & Muñoz-Galeano, N. (2021). Optimal Coordination of Over-Current Relays in Microgrids Using Principal Component Analysis and K-Means. Applied Sciences, 11(17), 7963. https://doi.org/10.3390/app11177963