Characteristics of Low-Frequency Acoustic Wave Propagation in Ice-Covered Shallow Water Environment
Abstract
:1. Introduction
2. Elastic Model
2.1. Elastic Parabolic Equation Method with Ice Covers
2.2. Boundary Condition
3. Model Validation
4. Parameter Analysis
4.1. The Influence of Ice Thickness
4.2. The Influence of Seafloor Parameters
4.3. The Influence of Sea Water Depth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, J.; Kumar, A.; Mohan, R. Dramatic decline of Arctic sea ice linked to global warming. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2020, 103, 2617–2621. [Google Scholar] [CrossRef]
- Burke, J.E. Scattering and reflection by elliptically striated surfaces. J. Acoust. Soc. Am. 1966, 40, 883–895. [Google Scholar] [CrossRef]
- Diachok, O.I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 1976, 59, 1110–1120. [Google Scholar] [CrossRef]
- Wolf, J.W. Very-low-frequency under-ice reflectivity. J. Acoust. Soc. Am. 1992, 93, 1329–1334. [Google Scholar] [CrossRef]
- Kuperman, W.A. Self-consistent perturbation approach to rough surface scattering in stratified elastic media. J. Acoust. Soc. Am. 1989, 86, 1511–1522. [Google Scholar] [CrossRef]
- Kuperman, W.A. Rough surface elastic wave scattering in a horizontally stratified ocean. J. Acoust. Soc. Am. 1986, 79, 1767–1777. [Google Scholar] [CrossRef]
- Kuperman, W.A. Coherent component of specular reflection and transmission at a randomly rough two-fluid interface. J. Acoust. Soc. Am. 1975, 58, 365–370. [Google Scholar] [CrossRef]
- Collis, J.M.; Frank, S.D.; Metzler, A.M. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers. J. Acoust. Soc. Am. 2016, 139, 2672–2682. [Google Scholar] [CrossRef]
- Frank, S.D.; Ivakin, A.N. Estimating the influence of ice thickness and elasticity on long-range narrow-band reverberation in an Arctic environment. Meet. Acoust. Soc. Am. 2017, 30, 070003. [Google Scholar]
- Frank, S.D.; Ivakin, A.N. Application of elastic parabolic equation solutions to calculation of acoustic reverberation in ice-covered underwater environments. 178th Meet. Acoust. Soc. Am. 2019, 39, 022002. [Google Scholar]
- De Basabe, J.D.; Sen, M.K. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface. Geophys. J. Int. 2015, 200, 278–298. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Sun, X. Numerical simulation of elastic stress wave refraction at air-solid interfaces. J. Beijing Inst. Technol. 2020, 29, 209–221. [Google Scholar]
- Jerzak, W.; Siegmann, W.L.; Collins, M.D. Modeling Rayleigh and Stoneley waves and other interface and boundary effects with the parabolic equation. J. Acoust. Soc. Am. 2005, 117, 3497–3503. [Google Scholar] [CrossRef] [PubMed]
- Outing, D.A. Parabolic Equation Methods for Range Dependent Layered Elastic Media. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2004. [Google Scholar]
- Collins, M.D. A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom. J. Acoust. Soc. Am. 1989, 86, 1459–1464. [Google Scholar] [CrossRef]
- Collins, M.D. A self-starter for the parabolic equation method. J. Acoust. Soc. Am. 1992, 92, 2069–2074. [Google Scholar] [CrossRef]
- Collins, M.D. Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation. J. Acoust. Soc. Am. 1990, 89, 1050–1057. [Google Scholar] [CrossRef]
- Collis, J.M. New capabilities for parabolic equations in elastic media. Rensselaer Polytech. Inst. 2006, 67, 5105–5203. [Google Scholar]
- Zhao, Y.; Zhou, X.; Huang, G. Non-reciprocal Rayleigh waves in elastic gyroscopic medium. J. Mech. Phys. Solids 2020, 143, 104065. [Google Scholar] [CrossRef]
- Johansen, T.A.; Ruud, B.O. Characterization of seabed properties from Scholte waves acquired on floating ice on shallow water. Near Surf. Geophys. 2020, 18, 19–59. [Google Scholar] [CrossRef]
- Greene, R.R. A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces. J. Acoust. Soc. Am. 1985, 77, 1991–1998. [Google Scholar] [CrossRef]
- Collins, M.D. Treatment of ice cover and other thin elastic layers with the parabolic equation method. J. Acoust. Soc. Am. 2015, 137, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Schneiderwind, J.D.; Collis, J.M.; Simpson, H.J. Elastic Pekeris waveguide normal mode solution comparisons against laboratory data. J. Acoust. Soc. Am. 2012, 132, 182–188. [Google Scholar] [CrossRef] [PubMed]
Layer Type | Parameter | Value |
---|---|---|
Ice layer | Ice thickness (m) | 3 |
Ice density (g/cm3) | 0.9 | |
Compressional speed ice (m/s) | 3500 | |
Shear speed ice (m/s) | 1800 | |
Compressional attenuation ice (dB/λ) | 0.3 | |
Shear attenuation ice (dB/λ) | 1.0 | |
Fluid layer | Fluid depth (m) | 100 |
Fluid density (g/cm3) | 1.0 | |
Compressional speed fluid (m/s) | 1482 | |
Seafloor layer | Seafloor density (g/cm3) | 2.2 |
Compressional attenuation seafloor (dB/λ) | 0.76 | |
Shear attenuation seafloor (dB/λ) | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yuan, S.; Liu, S.; Wen, J.; Huang, Q.; Zhang, Z. Characteristics of Low-Frequency Acoustic Wave Propagation in Ice-Covered Shallow Water Environment. Appl. Sci. 2021, 11, 7815. https://doi.org/10.3390/app11177815
Li S, Yuan S, Liu S, Wen J, Huang Q, Zhang Z. Characteristics of Low-Frequency Acoustic Wave Propagation in Ice-Covered Shallow Water Environment. Applied Sciences. 2021; 11(17):7815. https://doi.org/10.3390/app11177815
Chicago/Turabian StyleLi, Shande, Shuai Yuan, Shaowei Liu, Jian Wen, Qibai Huang, and Zhifu Zhang. 2021. "Characteristics of Low-Frequency Acoustic Wave Propagation in Ice-Covered Shallow Water Environment" Applied Sciences 11, no. 17: 7815. https://doi.org/10.3390/app11177815
APA StyleLi, S., Yuan, S., Liu, S., Wen, J., Huang, Q., & Zhang, Z. (2021). Characteristics of Low-Frequency Acoustic Wave Propagation in Ice-Covered Shallow Water Environment. Applied Sciences, 11(17), 7815. https://doi.org/10.3390/app11177815