Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the Removal of Methylene Blue from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of TiO2/LAC Photocatalysts
2.3. Characterization
2.4. Methylene Blue Removal by Adsorption and Photocatalytic Degradation
3. Results
3.1. Characterization of the Materials
3.1.1. Textural Properties
3.1.2. SEM Analysis
3.1.3. XRD Patterns
3.1.4. X-ray Photoelectron Spectroscopy
3.1.5. FTIR Spectra Analysis
3.1.6. UV-Vis Diffuse Reflectance Spectroscopy
3.2. Methylene Blue Removal by Adsorption and Photocatalytic Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Martins, A.C.; Cazetta, A.L.; Pezoti, O.; de Souza, J.R.B.; Zhang, T.; Pilau, E.; Asefa, T.; Almeida, V.C. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int. 2017, 43, 4411–4418. [Google Scholar] [CrossRef]
- Molina-Sabio, M.; Almansa, M.-C.; Rodriguez-Reinoso, F. Phosphoric acid activated carbon discs for methane adsorption. Carbon 2003, 41, 2113–2119. [Google Scholar] [CrossRef]
- Kabra, A.N.; Khandare, R.V.; Waghmode, T.R.; Govindwar, S.P. Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc. Chemosphere 2012, 87, 265–272. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Cheng, Z. Removal of organic pollutants from aqueous solution using agricultural wastes: A review. J. Mol. Liq. 2015, 212, 739–762. [Google Scholar] [CrossRef]
- Ebrahimi, H.R.; Afarani, E. Preparation of Metal Catalysts on Granule Glass for Degradation of Textile Dyes as Environmental Contaminants. World Appl. Sci. J. 2008, 3, 738–741. [Google Scholar]
- Al-Malack, M.H.; Dauda, M. Competitive adsorption of cadmium and phenol on activated carbon produced from municipal sludge. J. Environ. Chem. Eng. 2017, 5, 2718–2729. [Google Scholar] [CrossRef]
- Cruz, G.; Gómez, M.M.; Solis, J.; Rimaycuna, J.; Solis, R.F.; Cruz, J.; Rathnayake, B.; Keiski, R. Composites of ZnO nanoparticles and biomass based activated carbon: Adsorption, photocatalytic and antibacterial capacities. Water Sci. Technol. 2018, 2017, 492–508. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Kumar, R. Adsorption studies of hazardous malachite green onto treated ginger waste. J. Environ. Manag. 2010, 91, 1032–1038. [Google Scholar] [CrossRef]
- da Costa, E.; Zamora, P.P.; Zarbin, A.J. Novel TiO2/C nanocomposites: Synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants. J. Colloid Interface Sci. 2012, 368, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, P.; Xi, X.; Zhang, X.; Hou, G.; Guan, R. Template-Free Synthesis of Monoclinic BiVO4 with Porous Structure and Its High Photocatalytic Activity. Materials 2016, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- da Silva, W.; Dos Santos, J.H. Ecotechnological strategies in the development of alternative photocatalysts. Curr. Opin. Green Sustain. Chem. 2017, 6, 63–68. [Google Scholar] [CrossRef]
- Lucas, M.; Tavares, P.; Peres, J.; Faria, J.; Rocha, M.; Pereira, C.; Freire, C. Photocatalytic degradation of Reactive Black 5 with TiO2-coated magnetic nanoparticles. Catal. Today 2013, 209, 116–121. [Google Scholar] [CrossRef]
- Gaya, U.I. Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Guimarães, J.R.; Maniero, M.G.; de Araújo, R.N. A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J. Environ. Manag. 2012, 110, 33–39. [Google Scholar] [CrossRef]
- Paušová, S.; Riva, M.; Baudys, M.; Krýsa, J.; Barbieriková, Z.; Brezová, V. Composite materials based on active carbon/TiO2 for photocatalytic water purification. Catal. Today 2019, 328, 178–182. [Google Scholar] [CrossRef]
- Xing, B.; Shi, C.; Zhang, C.; Yi, G.; Chen, L.; Guo, H.; Huang, G.; Cao, J. Preparation of TiO2/Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation. J. Nanomater. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Asiltürk, M.; Şener, S. TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities. Chem. Eng. J. 2012, 180, 354–363. [Google Scholar] [CrossRef]
- Ekka, B.; Sahu, M.K.; Patel, R.; Dash, P. Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: Optimization using statistical design. Water Resour. Ind. 2019, 22, 100071. [Google Scholar] [CrossRef] [Green Version]
- Barroso-Martín, I.; Moretti, E.; Talon, A.; Storaro, L.; Rodríguez-Castellón, E.; Infantes-Molina, A. Au and AuCu Nanoparticles Supported on SBA-15 Ordered Mesoporous Titania-Silica as Catalysts for Methylene Blue Photodegradation. Materials 2018, 11, 890. [Google Scholar] [CrossRef] [Green Version]
- Tasbihi, M.; Kočí, K.; Edelmannová, M.; Troppová, I.; Reli, M.; Schomäcker, R. Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2. J. Photochem. Photobiol. A Chem. 2018, 366, 72–80. [Google Scholar] [CrossRef]
- Wang, B.; de Godoi, F.C.; Sun, Z.; Zeng, Q.; Zheng, S.; Frost, R.L. Synthesis, characterization and activity of an immobilized photocatalyst: Natural porous diatomite supported titania nanoparticles. J. Colloid Interface Sci. 2014, 438, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Velo-Gala, I.; López-Peñalver, J.J.L.; Sanchez-Polo, M.; Rivera-Utrilla, J. Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal. B Environ. 2013, 142–143, 694–704. [Google Scholar] [CrossRef]
- Andriantsiferana, C.; Mohamed, E.; Delmas, H. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material. Environ. Technol. 2013, 35, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Srinivasakannan, C.; Wang, X.; Wang, F.; Liu, X. Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. J. Taiwan Inst. Chem. Eng. 2017, 70, 374–381. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresour. Technol. 2012, 111, 425–432. [Google Scholar] [CrossRef]
- Ghouma, I.; Jeguirim, M.; Dorge, S.; Limousy, L.; Ghimbeu, C.M.; Ouederni, A. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chim. 2015, 18, 63–74. [Google Scholar] [CrossRef]
- Puma, G.L.; Bono, A.; Krishnaiah, D.; Collin, J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008, 157, 209–219. [Google Scholar] [CrossRef]
- Liu, F.; Feng, N.; Yang, L.; Wang, Q.; Xu, J.; Deng, F. Enhanced Photocatalytic Performance of Carbon-Coated TiO2–x with Surface-Active Carbon Species. J. Phys. Chem. C 2018, 122, 10948–10955. [Google Scholar] [CrossRef]
- Omri, A.; Lambert, S.; Geens, J.; Bennour, F.; Benzina, M. Synthesis, Surface Characterization and Photocatalytic Activity of TiO2 Supported on Almond Shell Activated Carbon. J. Mater. Sci. Technol. 2014, 30, 894–902. [Google Scholar] [CrossRef]
- Ouzzine, M.; Romero-Anaya, A.J.; Lillo-Ródenas, M.A.; Linares-Solano, A. Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts. Carbon 2014, 67, 104–118. [Google Scholar] [CrossRef]
- Araña, J.; Doña-Rodríguez, J.M.; Tello Rendón, E.; Garriga i Cabo, C.; González-Díaz, O.; Herrera-Melián, J.A.; Pérez-Peña, J.; Colón, G.; Navío, J.A. TiO2 activation by using activated carbon as a support: Part I. Surface characterisation and decantability study. Appl. Catal. B Environ. 2003, 44, 161–172. [Google Scholar] [CrossRef]
- Ramli, Z.A.C.; Asim, N.; Isahak, W.N.R.W.; Emdadi, Z.; Ahmad-Ludin, N.; Yarmo, M.A.; Sopian, K. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared CarbonaceousTiO2. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchenafa-Saïb, N.; Grangé, P.; Verhasselt, P.; Addoun, F.; Dubois, V. Effect of oxidant treatment of date pit active carbons used as Pd supports in catalytic hydrogenation of nitrobenzene. Appl. Catal. A Gen. 2005, 286, 167–174. [Google Scholar] [CrossRef]
- Romero-Anaya, A.J.; Lillo-Ródenas, M.A.; Salinas-Martínez de Lecea, C.; Linares-Solano, A. Hydrothermal and conventional H3PO4 activation of two natural bio-fibers. Carbon 2012, 50, 3158–3169. [Google Scholar] [CrossRef]
- Mills, A.; Hill, C.; Robertson, P. Overview of the current ISO tests for photocatalytic materials. J. Photochem. Photobiol. A Chem. 2012, 237, 7–23. [Google Scholar] [CrossRef]
- Alberoni, C.; Barroso-Martín, I.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Talon, A.; Zhao, H.; You, S.; Vomiero, A.; Moretti, E. Ceria doping boosts methylene blue photodegradation in titania nanostructures. Mater. Chem. Front. 2021, 5, 4138–4152. [Google Scholar] [CrossRef]
- Zaccariello, G.; Moretti, E.; Storaro, L.; Riello, P.; Canton, P.; Gombac, V.; Montini, T.; Rodriguez-Castellon, E.; Benedetti, A. TiO2–mesoporous silica nanocomposites: Cooperative effect in the photocatalytic degradation of dyes and drugs. RSC Adv. 2014, 4, 37826–37837. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark Alexander, V.; Olivier James, P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing Kenneth, S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051. [Google Scholar] [CrossRef] [Green Version]
- Innocent, O.; Oboh, E.O.; Thomas, O.K.A. Application of Luffa Cylindrica in Natural forme as Biosorbent to Removal Divalent Metals from Aqueous Solutions Kinetic and Equilibrium Study, Waste Water-Treatment and Reutilization. InTech 2011, 196–212. [Google Scholar] [CrossRef] [Green Version]
- González-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Xu, S.-S.; Qiu, S.-W.; Yuan, Z.-Y.; Ren, T.-Z.; Bandosz, T.J. Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. J. Colloid Interface Sci. 2019, 540, 285–294. [Google Scholar] [CrossRef]
- Lopez, T.; Cuevas, J.; Ilharco, L.; Ramírez, P.; Rodríguez-Reinoso, F.; Rodríguez-Castellón, E. XPS characterization and E. Coli DNA degradation using functionalized Cu/TiO2 nanobiocatalysts. Mol. Catal. 2018, 449, 62–71. [Google Scholar] [CrossRef]
- Xu, T.; Liu, X. Peanut Shell Activated Carbon: Characterization, Surface Modification and Adsorption of Pb2+ from Aqueous Solution. Chin. J. Chem. Eng. 2008, 16, 401–406. [Google Scholar] [CrossRef]
- Valero-Romero, M.J.; Calvo-Muñoz, E.M.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T. Phosphorus-Containing Mesoporous Carbon Acid Catalyst for Methanol Dehydration to Dimethyl Ether. Ind. Eng. Chem. Res. 2019, 58, 4042–4053. [Google Scholar] [CrossRef]
- Mateos, F.J.G.; Berenguer, R.; Valero-Romero, M.J.; Rodríguez-Mirasol, J.; Cordero, T. Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. J. Mater. Chem. A 2017, 6, 1219–1233. [Google Scholar] [CrossRef]
- Hou, C.; Hu, B.; Zhu, J. Photocatalytic Degradation of Methylene Blue over TiO2 Pretreated with Varying Concentrations of NaOH. Catalysts 2018, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Andronic, L.; Enesca, A.; Cazan, C.; Visa, M. TiO2–active carbon composites for wastewater photocatalysis. J. Sol Gel Sci. Technol. 2014, 71, 396–405. [Google Scholar] [CrossRef]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands, 2017; p. 239. [Google Scholar]
- Qu, L.-L.; Wang, N.; Li, Y.-Y.; Bao, D.-D.; Yang, G.-H.; Li, H.-T. Novel titanium dioxide–graphene–activated carbon ternary nanocomposites with enhanced photocatalytic performance in rhodamine B and tetracycline hydrochloride degradation. J. Mater. Sci. 2017, 52, 8311–8320. [Google Scholar] [CrossRef]
- Fu, P.; Luan, Y.; Dai, X. Preparation of TiO2 photocatalyst anchored on activated carbon fibers and its photodegradation of methylene blue. China Particuol. 2004, 2, 76–80. [Google Scholar] [CrossRef]
- Murugan, C.; Bhojanaa, K.; Ong, W.-J.; Jothivenkatachalam, K.; Pandikumar, A. Improving hole mobility with the heterojunction of graphitic carbon nitride and titanium dioxide via soft template process in photoelectrocatalytic water splitting. Int. J. Hydrog. Energy 2019, 44, 30885–30898. [Google Scholar] [CrossRef]
- Morawski, A.W.; Janus, M.; Tryba, B.; Toyoda, M.; Tsumura, T.; Inagaki, M. Carbon modified TiO2 photocatalysts for water purification. Pol. J. Chem. Technol. 2009, 11, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Shaban, Y.A.; El Sayed, M.A.; El Maradny, A.A.; Al Farawati, R.K.; Al Zobidi, M.I. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations. Chemosphere 2013, 91, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants. Build. Environ. 2020, 189, 107518. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET (m2 g−1) | VDR N2 (cm3 g−1) | VMESO (cm3 g−1) | VDR CO2 (cm3 g−1) | VTotal (cm3 g−1) |
---|---|---|---|---|---|
Ti (P25) | 60 | 0.02 | 0.08 | 0.02 | 0.10 |
LAC | 1172 | 0.54 | 0.64 | 0.21 | 1.18 |
TiLAC-7/3 | 378 | 0.16 | 0.28 | 0.07 | 0.43 |
TiLAC-9/1 | 161 | 0.07 | 0.20 | 0.03 | 0.27 |
BE (eV) C 1s Signal | BE (eV) O 1s Signal | |||||||
---|---|---|---|---|---|---|---|---|
LAC | 284.8 | 286.2 | 288.2 | 290.0 | 531.6 (33.2) | 533.4 (66.8) | ||
TiLAC-7/3 | 283.6 | 284.8 | 286.7 | 288.9 | 529.7 (82.3) | 531.2 (14.0) | 532.9 (3.7) | |
TiLAC-9/1 | 283.6 | 284.8 | 286.5 | 288.5 | 529.7 (85.0) | 531.2 (12.3) | 532.8 (2.7) | |
Ti | 284.9 | 286.6 | 288.7 | 529.7 (57.1) | 532.0 (42.9) |
C (%) | O (%) | P (%) | Ti (%) | |
---|---|---|---|---|
LAC | 93.25 | 6.13 | 0.62 | - |
TiLAC-7/3 | 38.80 | 43.02 | 0.93 | 17.26 |
TiLAC-9/1 | 26.92 | 51.34 | 0.37 | 21.36 |
Sample | k (min−1) |
---|---|
TiLAC-7/3 | 0.377 |
TiLAC-9/1 | 0.276 |
Ti (P25) | 0.182 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boumad, S.; Infantes-Molina, A.; Barroso-Martín, I.; Moretti, E.; Rodríguez-Castellón, E.; Román-Martínez, M.d.C.; Lillo-Ródenas, M.Á.; Bouchenafa-Saib, N. Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the Removal of Methylene Blue from Aqueous Solution. Appl. Sci. 2021, 11, 7607. https://doi.org/10.3390/app11167607
Boumad S, Infantes-Molina A, Barroso-Martín I, Moretti E, Rodríguez-Castellón E, Román-Martínez MdC, Lillo-Ródenas MÁ, Bouchenafa-Saib N. Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the Removal of Methylene Blue from Aqueous Solution. Applied Sciences. 2021; 11(16):7607. https://doi.org/10.3390/app11167607
Chicago/Turabian StyleBoumad, Souad, Antonia Infantes-Molina, Isabel Barroso-Martín, Elisa Moretti, Enrique Rodríguez-Castellón, María del Carmen Román-Martínez, María Ángeles Lillo-Ródenas, and Naima Bouchenafa-Saib. 2021. "Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the Removal of Methylene Blue from Aqueous Solution" Applied Sciences 11, no. 16: 7607. https://doi.org/10.3390/app11167607
APA StyleBoumad, S., Infantes-Molina, A., Barroso-Martín, I., Moretti, E., Rodríguez-Castellón, E., Román-Martínez, M. d. C., Lillo-Ródenas, M. Á., & Bouchenafa-Saib, N. (2021). Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the Removal of Methylene Blue from Aqueous Solution. Applied Sciences, 11(16), 7607. https://doi.org/10.3390/app11167607