Performance and Carcass Characteristics of Australian Prime Lambs Grazing Lucerne and Cocksfoot Pastures Are Enhanced by Supplementation with Plant Oil Infused Pellets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Animals, Experimental Design, Diets and Feed Sampling Procedures
2.3. Feed Intake, Body Conformation Measurements and Liveweight
2.4. Analysis of Pellet and Pasture Samples
2.5. Slaughter Protocol and Carcass Characteristics Measurements
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of Pastures and Supplementary Feeds
3.2. Effect of Pellet Supplementation on Liveweight, Concentrate Intake, Body Conformation and Carcass Characteristic of Prime Lambs
3.2.1. Liveweight, Concentrate Intake and Body Conformation
3.2.2. Carcass Characteristics
3.3. Effect of Pastures on Liveweight, Concentrate Intake, Body Conformation and Carcass Characteristics of Prime Lambs
4. Discussion
4.1. Chemical Composition of Pastures and Supplementary Feeds
4.2. Effect of Pellet Supplementation on Liveweight, Concentrate Intake, Body Conformation and Carcass Characteristics of Prime Lambs
4.2.1. Effect of Pellet Supplementation on Liveweight, Concentrate Intake, Body Conformation
4.2.2. Carcass Characteristics
4.3. Effect of Pastures on Liveweight, Concentrate Intake, Body Conformation and Carcass Characteristics of Prime Lambs
Liveweight, Concentrate Intake and Body Conformation
4.4. Carcass Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABARES. Lamb Farms. Available online: http://www.agriculture.gov.au/abares/research-topics/surveys/lamb (accessed on 11 April 2021).
- ABARES Land Management and Farming in Australia. Land Use on Farms. Available online: http://www.abs.gov.au/ausstats/[email protected]/mf/4627.0 (accessed on 24 January 2019).
- Pembleton, K.G.; Tozer, K.N.; Edwards, G.; Jacobs, J.; Turner, L. Simple versus diverse pastures: Opportunities and challenges in dairy systems. Anim. Prod. Sci. 2015, 55, 893–901. [Google Scholar] [CrossRef]
- Jacob, R.; Pethick, D. Animal factors affecting the meat quality of Australian lamb meat. Meat Sci. 2014, 96, 1120–1123. [Google Scholar] [CrossRef]
- Shakhane, L.M.; Mulcahy, C.; Scott, J.M.; Hinch, G.N.; Donald, G.E.; Mackay, D.F. Pasture herbage mass, quality and growth in response to three whole-farmlet management systems. Anim. Prod. Sci. 2013, 53, 685–698. [Google Scholar] [CrossRef] [Green Version]
- MLA. Fast Facts. Australia’s Sheep Industry. Available online: https://www.mla.com.au/globalassets/mla-corporate/prices--markets/documents/trends--analysis/fast-facts--maps/mla_sheep-fast-facts-2017_final.pdf (accessed on 25 January 2019).
- Ponnampalam, E.; Linden, N.; Mitchell, M.; Hopkins, D.; Jacobs, J. Production systems to deliver premium grade lambs to the growing international and Australian markets. Small Rumin. Res. 2017, 157, 32–39. [Google Scholar] [CrossRef]
- De Brito, G.F.; Ponnampalam, E.N.; Hopkins, D. The Effect of Extensive Feeding Systems on Growth Rate, Carcass Traits, and Meat Quality of Finishing Lambs. Compr. Rev. Food Sci. Food Saf. 2016, 16, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Lolicato, S.; Rumball, W. Past and present improvement of cocksfoot (Dactylis glomerataL.) in Australia and New Zealand. N. Z. J. Agric. Res. 1994, 37, 379–390. [Google Scholar] [CrossRef]
- Le, H.V.; Nguyen, Q.V.; Nguyen, D.V.; Otto, J.R.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Enhanced Omega-3 Polyunsaturated Fatty Acid Contents in Muscle and Edible Organs of Australian Prime Lambs Grazing Lucerne and Cocksfoot Pastures. Nutrients 2018, 10, 1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACECRC. Climate Futures for Tasmania General Climate Impacts: The Summary. Available online: http://www.dpac.tas.gov.au/__data/assets/pdf_file/0019/134209/CFT_Summary_-_General_Climate_Impacts.pdf (accessed on 30 March 2019).
- Australia Climate in Tasmania. Available online: http://australia101.com/about-australia/climate-in-australia/tas/ (accessed on 30 March 2019).
- Gaber, M.A.F.M.; Tujillo, F.J.; Mansour, M.P.; Juliano, P. Improving Oil Extraction from Canola Seeds by Conventional and Advanced Methods. Food Eng. Rev. 2018, 10, 198–210. [Google Scholar] [CrossRef]
- Esa, N.M.; Ling, T.B.; Peng, L.S. By-products of Rice Processing: An Overview of Health Benefits and Applications. Rice Res. Open Access 2013, 1, 1–11. [Google Scholar] [CrossRef]
- Le, H.V.; Nguyen, Q.V.; Nguyen, D.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Nutritional Supplements Fortified with Oils from Canola, Flaxseed, Safflower and Rice Bran Improve Feedlot Performance and Carcass Characteristics of Australian Prime Lambs. Animals 2018, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Growth performance and carcass characteristics of Australian prime lambs supplemented with pellets containing canola oil or flaxseed oil. Anim. Prod. Sci. 2018, 58, 2100. [Google Scholar] [CrossRef]
- Flakemore, A.R.; Otto, J.R.; Suybeng, B.; Balogun, R.O.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Performance and carcass characteristics of Australian purebred and crossbred lambs supplemented with Rice Bran. J. Anim. Sci. Technol. 2015, 57, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, B.; Kashani, A.; Malau-Aduli, A.E.O. Effects of Spirulina (Arthrospira platensis) supplementation level and basal diet on liveweight, body conformation and growth traits in genetically divergent Australian dual-purpose lambs during simulated drought and typical pasture grazing. Small Rumin. Res. 2014, 120, 6–14. [Google Scholar] [CrossRef]
- Kenyon, P.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agric. Res. 2013, 57, 38–64. [Google Scholar] [CrossRef]
- Malau-Aduli, A.E.O.; Nguyen, D.V.; Le, H.V.; Nguyen, Q.V.; Otto, J.R.; Malau-Aduli, B.S.; Nichols, P.D. Correlations between growth and wool quality traits of genetically divergent Australian lambs in response to canola or flaxseed oil supplementation. PLoS ONE 2019, 14, e0208229. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Bath, D.L.; Marble, V.L. Testing Alfalfa Hay for Its Feeding Value; Leaflet WREP Division of Agriculture & Natural Resources: University of California, Oakland, CA, USA, 1989. [Google Scholar]
- Robinson, P.; Givens, D.; Getachew, G. Evaluation of NRC, UC Davis and ADAS approaches to estimate the metabolizable energy values of feeds at maintenance energy intake from equations utilizing chemical assays and in vitro determinations. Anim. Feed. Sci. Technol. 2004, 114, 75–90. [Google Scholar] [CrossRef]
- Australia New Zealand Food Regulation Ministerial Council. Australian Standard for the Hygienic Production and Transportation of Meat and Meat Products for Human Consumption; (Food Regulation Standing Committee (FRSC)); CSIRO Publishing: Collingwood, VIC, Austrilia, 2007. [Google Scholar]
- Neville, B.W.; Schauer, C.S.; Karges, K.; Gibson, M.L.; Thompson, M.M.; Kirschten, L.A.; Dyer, N.W.; Berg, P.T.; Lardy, G.P. Effect of thiamine concentration on animal health, feedlot performance, carcass characteristics, and ruminal hydrogen sulfide concentrations in lambs fed diets based on 60% distillers dried grains plus solubles1. J. Anim. Sci. 2010, 88, 2444–2455. [Google Scholar] [CrossRef] [Green Version]
- MLA. Market Reports and Prices. Available online: http://www.mla.com.au/prices-markets/Market-reports-prices/ (accessed on 15 July 2021).
- SAS. Statistical Analysis System. SAS/STAT User’s Guide: Statistics, 9th ed.; SAS Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Malau-Aduli, A.E.O.; Kashani, A. Molecular genetics-nutrition interactions in the expression of AANAT, ADRB3, BTG2 and FASN genes in the heart, kidney and liver of Australian lambs supplemented with Spirulina (Arthrospira platensis). Genes Genom. 2015, 37, 633–644. [Google Scholar] [CrossRef]
- Malau-Aduli, A.E.O.; Holman, B.W.B.; Kashani, A.; Nichols, P.D.; Malau-Aduli, A.E.O. Sire breed and sex effects on the fatty acid composition and content of heart, kidney, liver, adipose and muscle tissues of purebred and first-cross prime lambs. Anim. Prod. Sci. 2016, 56, 2122. [Google Scholar] [CrossRef]
- Robertson, S.; Clayton, E.; Morgan, B.; Friend, M. Reproductive performance in ewes fed varying levels of cut lucerne pasture around conception. Anim. Reprod. Sci. 2015, 158, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, N.M.; Poli, C.H.E.C.; Bremm, C.; Tontini, J.F.; Castilhos, Z.M.S.; McManus, C.M.; Sarout, B.N.M.; Castro, J.M.; Monteiro, A. Effect of concentrate supplementation on performance and ingestive behaviour of lambs grazing tropical Aruana grass (Panicum maximum). Anim. Prod. Sci. 2016, 56, 1693–1699. [Google Scholar] [CrossRef]
- Douglas, G.B.; Wang, Y.; Waghorn, G.C.; Barry, T.N.; Purchas, R.W.; Foote, A.G.; Wilson, G.F. Liveweight gain and wool production of sheep grazingLotus corniculatusand lucerne (Medicago sativa). N. Z. J. Agric. Res. 1995, 38, 95–104. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.; Mendes, I. The effect of supplementation with expanded sunflower seed on carcass and meat quality of lambs raised on pasture. Meat Sci. 2003, 65, 1301–1308. [Google Scholar] [CrossRef]
- Fourie, P.J.; Neser, F.W.C.; Olivier, J.J.; van der Westhuizen, C. Relationship between production performance, visual appraisal and body measurements of young Dorper rams. S. Afr. J. Anim. Sci. 2002, 32, 256–262. [Google Scholar]
- Moron-Fuenmayor, O.; Clavero, T. The effect of feeding system on carcass characteristics, non-carcass components and retail cut percentages of lambs. Small Rumin. Res. 1999, 34, 57–64. [Google Scholar] [CrossRef]
- Gardner, G.; Williams, A.; Ball, A.; Jacob, R.; Refshauge, G.; Edwards, J.H.; Behrendt, R.; Pethick, D. Carcase weight and dressing percentage are increased using Australian Sheep Breeding Values for increased weight and muscling and reduced fat depth. Meat Sci. 2015, 99, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, R.; Ferreira, A.; Hoffman, L. Production efficiency of South African Mutton Merino lambs and Boer goat kids receiving either a low or a high energy feedlot diet. Small Rumin. Res. 2003, 50, 75–82. [Google Scholar] [CrossRef]
- Díaz, M.; Velasco, S.; Cañeque, V.; Lauzurica, S.; de Huidobro, F.R.; Pérez, C.; González, J.; Manzanares, C. Use of concentrate or pasture for fattening lambs and its effect on carcass and meat quality. Small Rumin. Res. 2002, 43, 257–268. [Google Scholar] [CrossRef]
- Turner, K.; Belesky, D.; Cassida, K.; Zerby, H. Carcass merit and meat quality in Suffolk lambs, Katahdin lambs, and meat-goat kids finished on a grass–legume pasture with and without supplementation. Meat Sci. 2014, 98, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.D.; Speijers, M.H.M.; Theobald, V.J.; Fychan, A.R.; Jones, R. Production performance and meat quality of grazing lambs finished on red clover, lucerne or perennial ryegrass swards. Grass Forage Sci. 2004, 59, 345–356. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Castro-Pérez, B.; Urías-Estrada, J.; Ríos-Rincón, F.; Wences, Y.J.A.; Barreras, A.; López-Soto, M.; Plascencia, A.; Zinn, R. Influence of protein level on growth performance, dietary energetics and carcass characteristics of Pelibuey × Katahdin lambs finished with isocaloric diets. Small Rumin. Res. 2018, 160, 59–64. [Google Scholar] [CrossRef]
- Turner, K.; Cassida, K.; Zerby, H. Meat goat kids finished on alfalfa, red clover or orchardgrass pastures: Carcass merit and meat quality. Meat Sci. 2014, 98, 629–636. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g/kg) | NOP | CO | RBO |
---|---|---|---|
Wheat | 575 | 465 | 525 |
Paddy rice | 220 | 280 | 220 |
Lupins | 148 | 148 | 148 |
Canola oil, mL/kg | - | 50 | - |
Rice bran oil, mL/kg | - | - | 50 |
Ammonium sulphate | 12.6 | 12.6 | 12.6 |
Salt | 10 | 10 | 10 |
Limestone | 20.9 | 20.9 | 20.9 |
Sheep premix | 1 | 1 | 1 |
Acid buff | 6.25 | 6.25 | 6.25 |
Sodium bicarbonate | 6.25 | 6.25 | 6.25 |
Chemical Composition (% DM) | Lucerne | CFP | NOP | CO | RBO |
---|---|---|---|---|---|
DM | 20.7 | 20.5 | 89.1 | 91.1 | 90.2 |
CP | 18.6 | 13.3 | 15.7 | 15.3 | 14.7 |
ADF | 25.6 | 26.7 | 6.8 | 7.4 | 8.0 |
NDF | 35.9 | 43.8 | 18.3 | 19.9 | 18.7 |
EE | 1.8 | 3.0 | 2.1 | 4.6 | 3.9 |
ASH | 6.8 | 6.4 | 4.0 | 6.5 | 5.0 |
%TDN | 63.2 | 62.3 | 77.2 | 76.8 | 76.4 |
DE (Mcal/kg) | 2.8 | 2.7 | 3.4 | 3.4 | 3.4 |
ME (MJ/kg) | 9.5 | 9.4 | 11.7 | 11.6 | 11.5 |
Items | Control | NOP | CO | RBO | ||||
---|---|---|---|---|---|---|---|---|
CFP (n = 6) | Lucerne (n = 6) | CFP (n = 6) | Lucerne (n = 6) | CFP (n = 6) | Lucerne (n = 6) | CFP (n = 6) | Lucerne (n = 6) | |
Initial LWT (kg) | 41.9 ± 0.8 | 41.0 ± 0.8 | 42.6 ± 0.8 | 40.9 ± 0.8 | 41.4 ± 0.8 | 41.0 ± 0.8 | 40.9 ± 0.8 | 41.6 ± 0.8 |
Final LWT (kg) | 49.3 ± 1.2 | 50.1 ± 1.2 | 48.1 ± 1.2 | 50.5 ± 1.2 | 48.5 ± 1.2 | 50.8 ± 1.2 | 49.5 ± 1.2 | 51.1 ± 1.2 |
ADG (g) | 181.3 ± 21.9 abc | 221.9 ± 21.9 ab | 134.2 ± 21.9 c | 234.1 ± 21.9 ab | 172.4 ± 21.9 bc | 240.7 ± 21.9 a | 209.4 ± 21.9 ab | 231.7 ± 21.9 ab |
Concentrate intake (kg DM/head/day) | - | - | 0.9 ± 0.04 a | 0.7 ± 0.04 b | 0.8 ± 0.04 a | 0.6 ± 0.04 b | 0.8 ± 0.04 a | 0.9 ± 0.04 a |
FCE | - | - | 6.6 ± 0.4 a | 3.0 ± 0.4 c | 4.9 ± 0.4 b | 2.9 ± 0.4 c | 4.3 ± 0.4 b | 3.9 ± 0.4 bc |
FCPUG ($AU/kg) | - | - | 1.0 ± 0.1 a | 0.4 ± 0.1 c | 0.9 ± 0.1 a | 0.6 ± 0.1 bc | 0.7 ± 0.1 b | 0.6 ± 0.1 bc |
Initial BL (cm) | 64.8 ± 0.4 | 64.0 ± 0.4 | 64.7 ± 0.4 | 64.8 ± 0.4 | 64.7 ± 0.4 | 64.3 ± 0.4 | 64.3 ± 0.4 | 64.8 ± 0.4 |
∆ BL (cm) | 3.5 ± 0.5 | 4.5 ± 0.5 | 4.2 ± 0.5 | 4.3 ± 0.5 | 3.3 ± 0.5 | 4.3 ± 0.5 | 3.7 ± 0.5 | 3.8 ± 0.5 |
Initial WH (cm) | 62.8 ± 0.6 | 62.2 ± 0.6 | 62.8 ± 0.6 | 62.5 ± 0.6 | 62.5 ± 0.6 | 62.7 ± 0.6 | 62.3 ± 0.6 | 61.8 ± 0.6 |
∆ WH (cm) | 2.8 ± 0.6 bc | 4.7 ± 0.6 a | 2.7 ± 0.6 c | 4.5 ± 0.6 ab | 3.2 ± 0.6 abc | 3.5 ± 0.6 abc | 3.5 ± 0.6 abc | 4.7 ± 0.6 a |
Initial CG (cm) | 80.8 ± 0.7 | 81.2 ± 0.7 | 81.7 ± 0.7 | 80.7 ± 0.7 | 81.0 ± 0.7 | 80.5 ± 0.7 | 81.7 ± 0.7 | 81.2 ± 0.7 |
∆ CG (cm) | 3.3 ± 0.8 c | 6.2 ± 0.8 ab | 3.7 ± 0.8 c | 6.8 ± 0.8 a | 4.5 ± 0.8 bc | 6.3 ± 0.8 ab | 5.3 ± 0.8 abc | 7.0 ± 0.8 a |
Initial BCS | 3.0 ± 0.04 | 3.0 ± 0.04 | 3.1 ± 0.04 | 3.0 ± 0.04 | 3.0 ± 0.04 | 3.0 ± 0.04 | 3.1 ± 0.04 | 3.0 ± 0.04 |
∆ BCS | 0.4 ± 0.1 c | 0.8 ± 0.1 ab | 0.4 ± 0.1 c | 0.9 ± 0.1 a | 0.6 ± 0.1 bc | 0.7 ± 0.1 abc | 0.8 ± 0.1 ab | 0.8 ± 0.1 ab |
Items | Control | NOP | CO | RBO | ||||
---|---|---|---|---|---|---|---|---|
CFP (n = 6) | Lucerne (n = 6) | CFP (n = 6) | Lucerne (n = 6) | CFP (n = 6) | Lucerne (n = 6) | CFP (n = 6) | Lucerne (n = 6) | |
Pre-slaughter weight (kg) | 45.6 ± 1.1 | 46.9 ± 1.1 | 47.9 ± 1.1 | 47.5 ± 1.1 | 46.9 ± 1.1 | 47.9 ± 1.1 | 46.7 ± 1.1 | 48.3 ± 1.1 |
HCW (kg) | 22.5 ± 0.7 c | 24.1 ± 0.7 abc | 24.4 ± 0.7 ab | 25.4 ± 0.7 ab | 24.6 ± 0.7 ab | 25.2 ± 0.7 ab | 23.8 ± 0.7 bc | 25.7 ± 0.7 a |
Dressing percentage (%) | 45.6 ± 0.8 c | 48.2 ± 0.8 b | 50.8 ± 0.8 a | 50.3 ± 0.8 ab | 50.8 ± 0.8 a | 49.7 ± 0.8 ab | 48.1 ± 0.8 b | 50.4 ± 0.8 a |
Fat thickness (mm) | 6.0 ± 1.0 c | 11.0 ± 1.0 a | 8.3 ± 1.0 abc | 8.3 ± 1.0 abc | 8.2 ± 1.0 abc | 8.7 ± 1.0 abc | 7.8 ± 1.0 bc | 9.2 ± 1.0 ab |
Body wall thickness (mm) | 16.5 ± 1.5 b | 21.7 ± 1.5 a | 18.3 ± 1.5 ab | 21.2 ± 1.5 a | 20.7 ± 1.5 ab | 20.8 ± 1.5 a | 18.8 ± 1.5 ab | 22.0 ± 1.5 a |
Rib eye area (cm2) | 13.6 ± 0.7 c | 14.7 ± 0.7 bc | 15.8 ± 0.7 ab | 16.8 ± 0.7 a | 15.3 ± 0.7 abc | 16.0 ± 0.7 ab | 15.0 ± 0.7 abc | 15.8 ± 0.7 ab |
BCTRC% | 48.0 ± 0.3 a | 46.9 ± 0.3 b | 48.0 ± 0.3 a | 47.8 ± 0.3 ab | 47.4 ± 0.3 ab | 47.5 ± 0.3 ab | 47.8 ± 0.3 ab | 47.1 ± 0.3 ab |
GR fat score (1–5) | 2.7 ± 0.2 b | 3.5 ± 0.2 a | 3.2 ± 0.2 ab | 3.3 ± 0.2 a | 3.3 ± 0.2 a | 3.3 ± 0.2 a | 3.3 ± 0.2 a | 3.5 ± 0.2 a |
OTH trade ($AU) | 112.3 ± 3.3 c | 120.5 ± 3.3 abc | 122.2 ± 3.3 ab | 127.0 ± 3.3 ab | 123.2 ± 3.3 ab | 126.2 ± 3.3 ab | 119.2 ± 3.3 bc | 128.7 ± 3.3 a |
Items | Pastures | p Value | |
---|---|---|---|
CFP (n = 24) | Lucerne (n = 24) | ||
Initial LWT (kg) | 41.7 ± 0.37 | 41.1 ± 0.37 | 0.057 |
Final LWT (kg) | 48.9 ± 0.62 | 50.6 ± 0.62 | 0.247 |
ADG (g) | 174.3 ± 10.93 b | 232.1 ± 10.93 a | 0.001 |
Concentrate intake (kg DM/head/day) | 0.85 ± 0.02 a | 0.72 ± 0.02 b | 0.001 |
FCE | 5.25 ± 0.24 a | 3.26 ± 0.24 b | <0.0001 |
FCPUG ($AU/kg) | 0.87 ± 0.04 a | 0.54 ± 0.04 b | <0.0001 |
Initial BL (cm) | 64.6 ± 0.18 | 64.5 ± 0.18 | 0.630 |
∆ BL (cm) | 3.7 ± 0.27 | 4.3 ± 0.27 | 0.137 |
Initial WH (cm) | 62.6 ± 0.29 | 62.3 ± 0.29 | 0.427 |
∆ WH (cm) | 3.0 ± 0.31 b | 4.3 ± 0.31 a | 0.005 |
Initial CG (cm) | 81.3 ± 0.37 | 80.9 ± 0.37 | 0.426 |
∆ CG (cm) | 4.2 ± 0.39 b | 6.6 ± 0.39 a | 0.001 |
Initial BCS | 3.0 ± 0.02 | 3.0 ± 0.02 | 0.167 |
∆ BCS | 0.5 ± 0.05 b | 0.8 ± 0.05 a | 0.001 |
Items | Pastures | p Value | |
---|---|---|---|
CFP (n = 24) | Lucerne (n = 24) | ||
Pre-slaughter weight (kg) | 46.8 ± 0.56 | 47.7 ± 0.56 | 0.247 |
HCW (kg) | 23.8 ± 0.33 b | 25.1 ± 0.33 a | 0.009 |
Dressing percentage (%) | 48.8 ± 0.39 | 49.6 ± 0.39 | 0.143 |
Fat thickness (mm) | 7.6 ± 0.50 b | 9.3 ± 0.50 a | 0.021 |
Body wall thickness (mm) | 18.6 ± 0.74 b | 21.4 ± 0.74 a | 0.011 |
Rib eye area (cm2) | 14.9 ± 0.35 | 15.8 ± 0.35 | 0.080 |
BCTRC% | 47.8 ± 0.16 | 47.3 ± 0.16 | 0.051 |
GR fat score (1–5) | 3.1 ± 0.11 | 3.4 ± 0.11 | 0.061 |
OTH trade ($AU) | 119.2 ± 1.63 b | 125.6 ± 1.63 a | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, H.V.; Nguyen, Q.V.; Nguyen, D.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Performance and Carcass Characteristics of Australian Prime Lambs Grazing Lucerne and Cocksfoot Pastures Are Enhanced by Supplementation with Plant Oil Infused Pellets. Appl. Sci. 2021, 11, 7275. https://doi.org/10.3390/app11167275
Le HV, Nguyen QV, Nguyen DV, Malau-Aduli BS, Nichols PD, Malau-Aduli AEO. Performance and Carcass Characteristics of Australian Prime Lambs Grazing Lucerne and Cocksfoot Pastures Are Enhanced by Supplementation with Plant Oil Infused Pellets. Applied Sciences. 2021; 11(16):7275. https://doi.org/10.3390/app11167275
Chicago/Turabian StyleLe, Hung V., Quang V. Nguyen, Don V. Nguyen, Bunmi S. Malau-Aduli, Peter D. Nichols, and Aduli E. O. Malau-Aduli. 2021. "Performance and Carcass Characteristics of Australian Prime Lambs Grazing Lucerne and Cocksfoot Pastures Are Enhanced by Supplementation with Plant Oil Infused Pellets" Applied Sciences 11, no. 16: 7275. https://doi.org/10.3390/app11167275