Time-Dependent Cytokine-Release of Platelet-Rich Plasma in 3-Chamber Co-Culture Device and Conventional Culture Well
Abstract
:1. Introduction
2. Results
2.1. Subjects
2.1.1. Mean Blood Characteristics from 19 Patients
2.1.2. Time-Sequential Cytokine Release
2.1.3. Correlation of Platelet Counts and Cytokine Concentration
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PRP | Platelet-rich plasma |
TGF-β1 | transforming growth factor beta-1 |
PDGF | platelet-derived growth factor |
SD | standard deviation |
FGF | fibroblast growth factor |
TGF | transforming growth factor |
PDGF | platelet-derived growth factor |
VEGF | vascular endothelial growth factor |
References
- Everts, P.A.; Overdevest, E.P.; Jakimowicz, J.J.; Oosterbos, C.J.; Schonberger, J.P.; Knape, J.T.; van Zundert, A. The use of autologous platelet-leukocyte gels to enhance the healing process in surgery, a review. Surg. Endosc. 2007, 21, 2063–2068. [Google Scholar] [CrossRef] [Green Version]
- Gosens, T.; Peerbooms, J.C.; van Laar, W.; den Oudsten, B.L. Ongoing Positive Effect of Platelet-Rich Plasma Versus Corticosteroid Injection in Lateral Epicondylitis: A Double-Blind Randomized Controlled Trial With 2-year Follow-up. Am. J. Sports Med. 2011, 39, 1200–1208. [Google Scholar] [CrossRef]
- Wrotniak, M.; Bielecki, T.; Gazdzik, T.S. Current opinion about using the platelet-rich gel in orthopaedics and trauma surgery. Ortop. Traumatol. Rehabil. 2007, 9, 227–238. [Google Scholar]
- Anitua, E.; Andia, I.; Ardanza, B.; Nurden, P.; Nurden, A.T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb. Haemost. 2004, 91, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.B.; Chen, E.H.; Lynch, S.E. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr. Cartil. 2006, 14, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Bennardo, F.; Liborio, F.; Barone, S.; Antonelli, A.; Buffone, C.; Fortunato, L.; Giudice, A. Efficacy of platelet-rich fibrin compared with triamcinolone acetonide as injective therapy in the treatment of symptomatic oral lichen planus: A pilot study. Clin. Oral Investig. 2021, 25, 3747–3755. [Google Scholar] [CrossRef] [PubMed]
- Gumina, S.; Campagna, V.; Ferrazza, G.; Giannicola, G.; Fratalocchi, F.; Milani, A.; Postacchini, F. Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: A prospective randomized study. J. Bone Jt. Surg. Am. 2012, 94, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Randelli, P.; Arrigoni, P.; Ragone, V.; Aliprandi, A.; Cabitza, P. Platelet rich plasma in arthroscopic rotator cuff repair: A prospective RCT study, 2-year follow-up. J. Shoulder Elb. Surg. 2011, 20, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Salamanna, F.; Veronesi, F.; Maglio, M.; Della Bella, E.; Sartori, M.; Fini, M. New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: General overview on still open questions and outlook. Biomed. Res. Int. 2015, 2015, 846045. [Google Scholar] [CrossRef] [PubMed]
- LaPrade, R.F.; Goodrich, L.R.; Phillips, J.; Dornan, G.J.; Turnbull, T.L.; Hawes, M.L.; Dahl, K.D.; Coggins, A.N.; Kisiday, J.; Frisbie, D.; et al. Use of Platelet-Rich Plasma Immediately After an Injury Did Not Improve Ligament Healing, and Increasing Platelet Concentrations Was Detrimental in an In Vivo Animal Model. Am. J. Sports Med. 2018, 46, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Boswell, S.G.; Schnabel, L.V.; Mohammed, H.O.; Sundman, E.A.; Minas, T.; Fortier, L.A. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons. Am. J. Sports Med. 2014, 42, 42–49. [Google Scholar] [CrossRef]
- Mazzocca, A.D.; McCarthy, M.B.; Chowaniec, D.M.; Dugdale, E.M.; Hansen, D.; Cote, M.P.; Bradley, J.P.; Romeo, A.A.; Arciero, R.A.; Beitzel, K. The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells. Am. J. Sports Med. 2012, 40, 1742–1749. [Google Scholar] [CrossRef]
- Oh, J.H.; Kim, W.; Park, K.U.; Roh, Y.H. Comparison of the Cellular Composition and Cytokine-Release Kinetics of Various Platelet-Rich Plasma Preparations. Am. J. Sports Med. 2015, 43, 3062–3070. [Google Scholar] [CrossRef]
- Vo, T.N.; Kasper, F.K.; Mikos, A.G. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 2012, 64, 1292–1309. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.H.; Lei, K.F.; Yeh, W.L. Development of a co-culture device for the study of human tenocytes in response to the combined stimulation of electric field and platelet rich plasma (PRP). Biomed. Microdevices 2017, 19, 69. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Chen, P.; Yeh, W.; Chen, A.C.; Chan, Y.; Hsu, K.; Lei, K. The gelling effect of platelet-rich fibrin matrix when exposed to human tenocytes from the rotator cuff in small-diameter culture wells and the design of a co-culture device to overcome this phenomenon. Bone Jt. Res. 2019, 8, 216–223. [Google Scholar] [CrossRef]
- Hoppe, S.; Alini, M.; Benneker, L.M.; Milz, S.; Boileau, P.; Zumstein, M.A. Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J. Shoulder Elb. Surg. 2013, 22, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Almarza, A.J.; Augustine, S.M.; Woo, S.L. Changes in gene expression of matrix constituents with respect to passage of ligament and tendon fibroblasts. Ann. Biomed. Eng. 2008, 36, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Bestwick, C.S.; Bestwick, L.A.; Aspden, R.M.; Maffulli, N. Non-immortalized human tenocyte cultures as a vehicle for understanding cellular aspects to tendinopathy. Transl. Med. UniSa 2011, 1, 173–194. [Google Scholar]
- Mazzocca, A.D.; Chowaniec, D.; McCarthy, M.B.; Beitzel, K.; Cote, M.P.; McKinnon, W.; Arciero, R. In vitro changes in human tenocyte cultures obtained from proximal biceps tendon: Multiple passages result in changes in routine cell markers. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1666–1672. [Google Scholar] [CrossRef]
- Dragoo, J.L.; Wasterlain, A.S.; Braun, H.J.; Nead, K.T. Platelet-rich plasma as a treatment for patellar tendinopathy: A double-blind, randomized controlled trial. Am. J. Sports Med. 2014, 42, 610–618. [Google Scholar] [CrossRef]
- Clausen, C.; Hermund, N.U.; Donatsky, O.; Nielsen, H.; Osther, K. Homologous activated platelets stimulate differentiation and proliferation of primary human bone cells. Cells Tissues Organs 2006, 184, 68–75. [Google Scholar] [CrossRef]
- Uggeri, J.; Belletti, S.; Guizzardi, S.; Poli, T.; Cantarelli, S.; Scandroglio, R.; Gatti, R. Dose-dependent effects of platelet gel releasate on activities of human osteoblasts. J. Periodontol. 2007, 78, 1985–1991. [Google Scholar] [CrossRef]
- Krasna, M.; Domanovic, D.; Tomsic, A.; Svajger, U.; Jeras, M. Platelet gel stimulates proliferation of human dermal fibroblasts in vitro. Acta Derm. Alp. Pannonica Adriat 2007, 16, 105–110. [Google Scholar]
- Anitua, E.; Andia, I.; Sanchez, M.; Azofra, J.; del Mar Zalduendo, M.; de la Fuente, M.; Nurden, P.; Nurden, A.T. Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J. Orthop. Res. 2005, 23, 281–286. [Google Scholar] [CrossRef]
- Akeda, K.; An, H.S.; Okuma, M.; Attawia, M.; Miyamoto, K.; Thonar, E.J.; Lenz, M.E.; Sah, R.L.; Masuda, K. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr. Cartil. 2006, 14, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Okuda, K.; Kawase, T.; Momose, M.; Murata, M.; Saito, Y.; Suzuki, H.; Wolff, L.F.; Yoshie, H. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J. Periodontol. 2003, 74, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Lucarelli, E.; Beccheroni, A.; Donati, D.; Sangiorgi, L.; Cenacchi, A.; Del Vento, A.M.; Meotti, C.; Bertoja, A.Z.; Giardino, R.; Fornasari, P.M.; et al. Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 2003, 24, 3095–3100. [Google Scholar] [CrossRef]
- Fortunato, L.; Bennardo, F.; Buffone, C.; Giudice, A. Is the application of platelet concentrates effective in the prevention and treatment of medication-related osteonecrosis of the jaw? A systematic review. J. Cranio-Maxillofac. Surg. 2020, 48, 268–285. [Google Scholar] [CrossRef]
- Castricini, R.; Longo, U.G.; De Benedetto, M.; Panfoli, N.; Pirani, P.; Zini, R.; Maffulli, N.; Denaro, V. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: A randomized controlled trial. Am. J. Sports Med. 2011, 39, 258–265. [Google Scholar] [CrossRef]
- Rodeo, S.A.; Delos, D.; Williams, R.J.; Adler, R.S.; Pearle, A.; Warren, R.F. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: A prospective, randomized clinical study. Am. J. Sports Med. 2012, 40, 1234–1241. [Google Scholar] [CrossRef]
- Sanchez, M.; Anitua, E.; Azofra, J.; Andia, I.; Padilla, S.; Mujika, I. Comparison of surgically repaired Achilles tendon tears using platelet-rich fibrin matrices. Am. J. Sports Med. 2007, 35, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Schepull, T.; Kvist, J.; Norrman, H.; Trinks, M.; Berlin, G.; Aspenberg, P. Autologous platelets have no effect on the healing of human achilles tendon ruptures: A randomized single-blind study. Am. J. Sports Med. 2011, 39, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodeo, S.A. Biologic Approaches in Sports Medicine: Potential, Perils, and Paths Forward. Am. J. Sports Med. 2016, 44, 1657–1659. [Google Scholar] [CrossRef] [Green Version]
- Castillo, T.N.; Pouliot, M.A.; Kim, H.J.; Dragoo, J.L. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am. J. Sports Med. 2011, 39, 266–271. [Google Scholar] [CrossRef]
- Sundman, E.A.; Cole, B.J.; Fortier, L.A. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am. J. Sports Med. 2011, 39, 2135–2140. [Google Scholar] [CrossRef]
- Cole, B.J.; Karas, V.; Hussey, K.; Pilz, K.; Fortier, L.A. Hyaluronic Acid Versus Platelet-Rich Plasma: A Prospective, Double-Blind Randomized Controlled Trial Comparing Clinical Outcomes and Effects on Intra-articular Biology for the Treatment of Knee Osteoarthritis. Am. J. Sports Med. 2017, 45, 339–346. [Google Scholar] [CrossRef]
- de Mos, M.; van der Windt, A.E.; Jahr, H.; van Schie, H.T.; Weinans, H.; Verhaar, J.A.; van Osch, G.J. Can platelet-rich plasma enhance tendon repair? A cell culture study. Am. J. Sports Med. 2008, 36, 1171–1178. [Google Scholar] [CrossRef]
- Jo, C.H.; Roh, Y.H.; Kim, J.E.; Shin, S.; Yoon, K.S. Optimizing platelet-rich plasma gel formation by varying time and gravitational forces during centrifugation. J. Oral Implantol. 2013, 39, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.H.; Higashikawa, R.; Yeh, W.L.; Lei, K.F.; Chen, A.C. Investigation of Growth Factor and Tenocyte Proliferation Induced by Platelet Rich Plasma (PRP) in a 3-Chamber Co-Culture Device. Micromachines 2018, 9, 446. [Google Scholar] [CrossRef] [Green Version]
Whole Blood | PRP-A2 | PRP-B2 | ||
---|---|---|---|---|
Sex, M; F | 10; 9 | |||
Age, year | 58.4 ± 16.3 | |||
WBC, (103 cells/μL) | 5.4 ± 1.8 | 0.6 ± 0.5, (11%) | 1.6 ± 1.4, (29.4%) | |
RBC, ((106 cells/μL)) | 4.6 ± 1.1 | 0.04 ± 0.03, (1%) | 0.1 ± 0.03, (2%) | |
HGB, (g/dL) | 13.8 ± 3 | 0.08 ± 0.04 (0%) | 0.1 ± 0.1, (0%) | |
HCT, (103 cells/μL) | 41.1 ± 8.4 | 0.22 ± 0.1, (1%) | 0.5 ± 0.2, (1.2%) | |
PLT, (103 cells/μL) | 205.3 ± 50.7 | 452.7 ± 313.7, (221%) | 687.9 ± 367, (335%) |
0 h | 24 h | 48 h | 72 h | 96 h | ||
---|---|---|---|---|---|---|
TGF-β1 | Concentrations | |||||
3-chamber co-culture | 4250.79 ± 1441.14 | 4862.89 ± 1641.93 | 4915.04 ± 1483.96 | 5324.79 ± 1720.3 | 5390.04 ± 1371.79 | |
24-well plates | 6052.67 ± 1035.28 | 5999.44 ± 1040.79 | 6225.11 ± 943.76 | 6270.37 ± 1371.69 | 6005.04 ± 1011.19 | |
Pearson correlation coefficient between 2 devices | 0.682 | 0.759 | 0.737 | 0.825 | 0.763 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
PDGF-AB | Concentrations | |||||
3-chamber co-culture | 295.78 ± 44.53 | 319.74 ± 89.34 | 273.81 ± 82.14 | 265.16 ± 77.69 | 267.85 ± 64.32 | |
24-well plates | 296.99 ± 46.6 | 341.84 ± 75 | 308.48 ± 45.86 | 334.76 ± 41.28 | 350.82 ± 47.21 | |
Pearson correlation coefficient between 2 devices | 0.433 | 0.836 | 0.348 | 0.145 | 0.289 | |
p-value | 0.094 | <0.001 | 0.187 | 0.592 | 0.277 |
0 h | 24 h | 48 h | 72 h | 96 h | ||
---|---|---|---|---|---|---|
TGF-β1 | Pearson correlation coefficient | 0.139 | 0.21 | 0.1 | −0.14 | 0.95 |
p-value | 0.537 | 0.347 | 0.657 | 0.952 | 0.673 | |
PDGF-AB | Pearson correlation coefficient | −0.024 | 0.275 | 0.218 | 0.178 | 0.067 |
p-value | 0.93 | 0.303 | 0.418 | 0.51 | 0.804 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, C.-H.; Chen, P.; Chen, A.C.-Y.; Chan, Y.-S.; Hsu, K.-Y.; Lei, K.F. Time-Dependent Cytokine-Release of Platelet-Rich Plasma in 3-Chamber Co-Culture Device and Conventional Culture Well. Appl. Sci. 2021, 11, 6947. https://doi.org/10.3390/app11156947
Chiu C-H, Chen P, Chen AC-Y, Chan Y-S, Hsu K-Y, Lei KF. Time-Dependent Cytokine-Release of Platelet-Rich Plasma in 3-Chamber Co-Culture Device and Conventional Culture Well. Applied Sciences. 2021; 11(15):6947. https://doi.org/10.3390/app11156947
Chicago/Turabian StyleChiu, Chih-Hao, Poyu Chen, Alvin Chao-Yu Chen, Yi-Sheng Chan, Kuo-Yao Hsu, and Kin Fong Lei. 2021. "Time-Dependent Cytokine-Release of Platelet-Rich Plasma in 3-Chamber Co-Culture Device and Conventional Culture Well" Applied Sciences 11, no. 15: 6947. https://doi.org/10.3390/app11156947
APA StyleChiu, C.-H., Chen, P., Chen, A. C.-Y., Chan, Y.-S., Hsu, K.-Y., & Lei, K. F. (2021). Time-Dependent Cytokine-Release of Platelet-Rich Plasma in 3-Chamber Co-Culture Device and Conventional Culture Well. Applied Sciences, 11(15), 6947. https://doi.org/10.3390/app11156947