# Maximum Admissible Slip of Tractor Wheels without Disturbing the Soil Structure

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

^{−3}; ${R}_{k}$—rolling radius of the wheel, m; ${f}_{k}$—rolling resistance coefficient.

## 2. Materials and Methods

^{3}cylinder (Figure 2) and weighed on the scales. The latter were configured to measure in ounces (oz.). Because $1\mathrm{oz}\text{}=28.35\mathrm{g}$, the scale displayed the soil mass corresponding to its density in g cm

^{−3}. After 30 soil bulk density measurements, carried out every 3 m along the field diagonal, its average value was calculated.

^{−2}.

_{p}was calculated by the equation:

## 3. Results and Discussion

^{−3}and a moisture content of 12.4%, the initial value of the coefficient of its structure ${k}_{sin}$ was equal to 0.6. The minimum value of this coefficient ${k}_{smin}$ at which soil structure was considered satisfactory was equal to 0.4 [23].

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Lee, H.; Taheri, S. A novel approach to tire parameter identification. Proc. Inst. Mech. Eng. Part D Automob. Eng.
**2019**, 233, 55–72. [Google Scholar] [CrossRef] - Schreiber, M.; Kutzbach, H.D. Influence of soil and tire parameters on traction. Res. Agric. Eng.
**2008**, 54, 43–49. [Google Scholar] [CrossRef][Green Version] - Battiato, A.; Diserens, E. Traction force in arable farming: Agronomic and environmental aspects after field-data acquisition and modelling. In Proceedings of the International Conference of Agricultural Engineering, CIGR-AgEng, Valencia, Spain, 8–12 July 2012. [Google Scholar]
- Shafaei, S.M.; Loghavi, M.; Kamgar, S. Fundamental realization of longitudinal slip efficiency of tractor wheels in a tillage practice. Soil Tillage Res.
**2021**, 205, 104765. [Google Scholar] [CrossRef] - Guskov, V.V.; Velev, N.N.; Atamanov, Y.E.; Bocharov, N.F.; Ksenevich, I.P.; Solonskiy, A.S. Tractory: Theory; Mashinostroeniye: Moscow, Russia, 1988. (In Russian) [Google Scholar]
- Wang, G.; Kushwaha, R.L.; Zoerb, G.C. Traction performance of a model 4WD tractor. Can. Agric. Eng.
**1989**, 31, 125–129. [Google Scholar] - Kutkov, G.M. Tractors and Automobiles. Theory and Technological Properties; INFRA-M: Moscow, Russia, 2014. (In Russian) [Google Scholar]
- Noréus, O.; Stensson Trigell, S. Measurement of terrain values and drawbar pullfor six wheeled vehicle on sand. In Proceedings of the 16th International Conference of the International Society for Terrain-Vehicle Systems, Turin, Italy, 25–28 November 2008. [Google Scholar]
- Battiato, A.; Diserens, E. Influence of Tyre Inflation Pressure and Wheel Load on the Traction Performance of a 65 kW MFWD Tractor on a Cohesive Soil. J. Agric. Sci.
**2013**, 5, 197–215. [Google Scholar] [CrossRef] - Battiato, A.; Diserens, E.; Laloui, L.; Sartori, L. A Mechanistic Approach to Topsoil Damage due to Slip of Tractor Tyres. J. Agric. Sci. Appl.
**2013**, 2, 160–168. [Google Scholar] [CrossRef][Green Version] - Janulevičius, A.; Giedra, K. Tractor ballasting in field transport work. Transport
**2005**, 20, 146–153. [Google Scholar] [CrossRef] - Janulevičius, A.; Giedra, K. Tractor ballasting in field work. Mechanika
**2008**, 73, 27–34. [Google Scholar] - Spagnolo, R.T.; Volpato, C.E.S.; Barbosa, J.A.; Palma, M.A.Z.; Barros, M.M. Fuel consumption of a tractor in function of wear, of ballasting and tire inflation pressure. Eng. Agríc.
**2012**, 32, 131–139. [Google Scholar] [CrossRef][Green Version] - Damanauskas, V.; Janulevičius, A. Differences in tractor performance parameters between single-wheel 4WD and dual-wheel 2WD driving systems. J. Terramech.
**2015**, 60, 63–73. [Google Scholar] [CrossRef] - Abrahám, R.; Majdan, R.; Šima, T.; Chrastina, J.; Tulík, J. Increase in tractor drawbar pull using special wheels. Agron. Res.
**2014**, 12, 7–16. [Google Scholar] - Abrahám, R.; Zubčák, T.; Majdan, R. Drawbar pull of small tractor with special lug wheels. In Proceedings of the 7th International Confrerence on Trends in Agricultural Engineering, Prague, Czech Republic, 17–20 September 2019; pp. 2–7. [Google Scholar]
- Keller, T.; Arvidsson, J. Technical solutions to reduce the risk of subsoil compaction: Effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil. Soil Tillage Res.
**2004**, 79, 191–205. [Google Scholar] [CrossRef] - Bulgakov, V.; Aboltins, A.; Beloev, H.; Nadykto, V.; Kyurchev, V.; Adamchuk, V.; Kaminskiy, V. Experimental Investigation of Plow-Chopping Unit. Agriculture
**2021**, 11, 30. [Google Scholar] [CrossRef] - Janulevicius, A.; Pupinis, G.; Juostas, A. Mathematical description of tractor slippage with variable tire inflation pressure. In Proceedings of the Engineering for Rural Development: 17th International Scientific Conference Proceedings, Jelgava, Latvia, 23–25 May 2018. [Google Scholar]
- Prikner, P.; Kotek, M.; Jindra, P.; Pražan, R. Field compaction capacity of agricultural tyres. Agron. Res.
**2017**, 15, 806–816. [Google Scholar] - Nadykto, V.; Kotov, O. Method for Determining Soil Bulk Density (in Ukrainian: Sposib Viznachennya Shchilnosti Gruntu). Patent of Ukraine UA 97828, G 01N 1/00, 10 April 2015. [Google Scholar]
- Nadykto, V.; Kurchev, V.; Beloev, H.; Mitev, G. Determination of the Maximum Allowable Slipping of the Wheel Tractors. Agric. For. Transp. Mach. Technol.
**2017**, IV, 63–69. [Google Scholar] - Shein, E.V.; Goncharov, V.M. Agrophysics. Fenics, Rostov-na-Dony; Fenix: Russia, 2006; p. 399. ISBN 5-222-07741-1. (In Russian) [Google Scholar]

**Figure 4.**Dependence on the maximum tractor’s wheels slip ${\delta}_{max}$ from the rolling resistance coefficient ${f}_{k}$.

**Figure 5.**Dependence on the maximum tractor’s wheels slip ${\delta}_{max}$ from the soil bulk deformation coefficient ${k}_{o}$.

Index | Value |
---|---|

Tractor operating mass, kg | 8480 |

Nominal engine power (BF6M1013E, DEUTZ), kW | 132.3 |

Wheelbase, m | 2.860 |

Track, m | 1.860 |

Tires | 23.1R26 |

Coefficient ${k}_{d}$, m^{−1} | 0.21 |

Plow operating mass, kg | 800 |

Number of plow bottoms | 5 |

Width of plow bottom, m | 0.35 |

Operating width (B), m | 1.75 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bulgakov, V.; Aboltins, A.; Beloev, H.; Nadykto, V.; Kyurchev, V.; Adamchuk, V.; Kaminskiy, V.
Maximum Admissible Slip of Tractor Wheels without Disturbing the Soil Structure. *Appl. Sci.* **2021**, *11*, 6893.
https://doi.org/10.3390/app11156893

**AMA Style**

Bulgakov V, Aboltins A, Beloev H, Nadykto V, Kyurchev V, Adamchuk V, Kaminskiy V.
Maximum Admissible Slip of Tractor Wheels without Disturbing the Soil Structure. *Applied Sciences*. 2021; 11(15):6893.
https://doi.org/10.3390/app11156893

**Chicago/Turabian Style**

Bulgakov, Volodymyr, Aivars Aboltins, Hristo Beloev, Volodymyr Nadykto, Volodymyr Kyurchev, Valerii Adamchuk, and Viktor Kaminskiy.
2021. "Maximum Admissible Slip of Tractor Wheels without Disturbing the Soil Structure" *Applied Sciences* 11, no. 15: 6893.
https://doi.org/10.3390/app11156893