Titanium Periimplant Tissue Alterations: A Prospective Cohort Plate Retrieval Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CpTi | Commercially pure titanium |
ICP-OES | Inductively coupled plasma optical emission spectrometry |
ICP | Inductively coupled plasma |
CCDs | Charge-coupled devices |
Ti | Titanium |
SNR | Signal-to-background |
EDXA | Energy-dispersive X-ray spectroscopy |
SEM | Scanning electron microscope |
EDX | Energy-dispersive X-ray spectroscopy |
TEM | Transmitted electron microscopy |
References
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Breme, J.; Steinhauser, E.; Paulus, G. Commercially pure titanium Steinhäuser plate-screw system for maxillofacial surgery. Biomaterials 1988, 9, 310–313. [Google Scholar] [CrossRef]
- Riviș, M.; Roi, C.; Roi, A.; Nica, D.; Văleanu, A.; Rusu, L.-C. The Implications of Titanium Alloys Applied in Maxillofacial Osteosynthesis. Appl. Sci. 2020, 10, 3203. [Google Scholar] [CrossRef]
- Gepreel, M.A.-H.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Fage, S.W.; Muris, J.; Jakobsen, S.S.; Thyssen, J.P. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat. 2016, 74, 323–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercuri, L.G.; Miloro, M.; Skipor, A.K.; Bijukumar, D.; Sukotjo, C.; Mathew, M.T. Serum Metal Levels in Maxillofacial Reconstructive Surgery Patients: A Pilot Study. J. Oral Maxillofac. Surg. 2018, 76, 2074–2080. [Google Scholar] [CrossRef] [PubMed]
- Brunette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P. Titanium in Medicine: Material Science, Surface Science, Engineering; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Armencea, G.; Gheban, D.; Onisor, F.; Mitre, I.; Manea, A.; Trombitas, V.; Lazar, M.; Baciut, G.; Baciut, M.; Bran, S. Histological Change in Soft Tissue Surrounding Titanium Plates after Jaw Surgery. Materials 2019, 12, 3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torgersen, S.; Gjerdet, N.R.; Erichsen, E.S.; Bang, G. Metal particles and tissue changes adjacent to miniplates A retrieval study. Acta Odontol. Scand. 1995, 53, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Zaffe, D.; Bertoldi, C.; Consolo, U. Element release from titanium devices used in oral and maxillofacial surgery. Biomaterials 2003, 24, 1093–1099. [Google Scholar] [CrossRef]
- Weingart, D.; Steinemann, S.; Schilli, W.; Strub, J.; Hellerich, U.; Assenmacher, J.; Simpson, J. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int. J. Oral Maxillofac. Surg. 1994, 23, 450–452. [Google Scholar] [CrossRef]
- Tasat, D.R.; Domingo, M.G.; Bruno, M.E.; Guglielmotti, M.B.; Olmedo, D.G. Titanium Nanoparticle Size Influences Trace Concentration Levels in Skin Appendages. Toxicol. Pathol. 2017, 45, 624–632. [Google Scholar] [CrossRef]
- Bozkus, I.; Germec-Cakan, D.; Arun, T. Evaluation of Metal Concentrations in Hair and Nail After Orthognathic Surgery. J. Craniofacial Surg. 2011, 22, 68–72. [Google Scholar] [CrossRef]
- Fretwurst, T.; Buzanich, G.; Nahles, S.; Woelber, J.P.; Riesemeier, H.; Nelson, K. Metal elements in tissue with dental peri-implantitis: A pilot study. Clin. Oral Implant. Res. 2015, 27, 1178–1186. [Google Scholar] [CrossRef]
- Little, M.; Langford, R.J.; Bhanji, A.; Farr, D. Plate removal following orthognathic surgery. J. Cranio Maxillofac. Surg. 2015, 43, 1705–1709. [Google Scholar] [CrossRef]
- Pinto, C.; Asprino, L.; De Moraes, M. Chemical and structural analyses of titanium plates retrieved from patients. Int. J. Oral Maxillofac. Surg. 2015, 44, 1005–1009. [Google Scholar] [CrossRef]
- O’Connell, J.; Murphy, C.; Ikeagwuani, O.; Adley, C.; Kearns, G. The fate of titanium miniplates and screws used in maxillofacial surgery: A 10 year retrospective study. Int. J. Oral Maxillofac. Surg. 2009, 38, 731–735. [Google Scholar] [CrossRef]
- Yamamoto, K.; Matsusue, Y.; Horita, S.; Murakami, K.; Sugiura, T.; Kirita, T. Routine removal of the plate after surgical treatment for mandibular angle fracture with a third molar in relation to the fracture line. Ann. Maxillofac. Surg. 2015, 5, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Borys, J.; Maciejczyk, M.; Krȩtowski, A.J.; Antonowicz, B.; Ratajczak-Wrona, W.; Jabłońska, E.; Załęski, P.; Waszkiel, D.; Ładny, J.R.; Żukowski, P.; et al. The Redox Balance in Erythrocytes, Plasma, and Periosteum of Patients with Titanium Fixation of the Jaw. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, D.G.; Tasat, D.; Evelson, P.; Guglielmotti, M.B.; Cabrini, R.L. Biological response of tissues with macrophagic activity to titanium dioxide. J. Biomed. Mater. Res. Part A 2008, 84, 1087–1093. [Google Scholar] [CrossRef]
- Hirai, H.; Okumura, A.; Goto, M.; Katsuki, T. Histologic study of the bone adjacent to titanium bone screws used for mandibular fracture treatment. J. Oral Maxillofac. Surg. 2001, 59, 531–537. [Google Scholar] [CrossRef]
- Flatebø, R.S.; Johannessen, A.C.; Grønningsæter, A.G.; Bøe, O.E.; Gjerdet, N.R.; Grung, B.; Leknes, K.N. Host Response to Titanium Dental Implant Placement Evaluated in a Human Oral Model. J. Periodontol. 2006, 77, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Skipor, A.K.; Patterson, L.M.; Hallab, N.J.; Paprosky, W.G.; Black, J.; Galante, J.O. Metal Release in Patients Who Have Had a Primary Total Hip Arthroplasty. A Prospective, Controlled, Longitudinal Study. J. Bone Jt. Surg. Am. Vol. 1998, 80, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Maharjan, R.-S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-Learning-Based Approach to Decode the Influence of Nanomaterial Properties on Their Interaction with Cells. ACS Appl. Mater. Interfaces 2021, 13, 1943–1955. [Google Scholar] [CrossRef] [PubMed]
- De Morais, L.S.; Serra, G.G.; Palermo, E.F.A.; Andrade, L.; Müller, C.A.; Meyers, M.; Elias, C.N. Systemic levels of metallic ions released from orthodontic mini-implants. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 522–529. [Google Scholar] [CrossRef]
- Katou, F.; Andoh, N.; Motegi, K.; Nagura, H. Immuno-inflammatory responses in the tissue adjacent to titanium miniplates used in the treatment of mandibular fractures. J. Cranio Maxillofac. Surg. 1996, 24, 155–162. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Yeo, H.-H.; Lim, S.-C. Tissue response to titanium plates: A transmitted electron microscopic study. J. Oral Maxillofac. Surg. 1997, 55, 322–326. [Google Scholar] [CrossRef]
- Borys, J.; Maciejczyk, M.; Antonowicz, B.; Sidun, J.; Świderska, M.; Zalewska, A. Free Radical Production, Inflammation and Apoptosis in Patients Treated With Titanium Mandibular Fixations—An Observational Study. Front. Immunol. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Vatani, M.; Beigi, M.H.; Ejeian, F.; Mottaghi, A.; Yadegari-Naeini, A.; Nasr-Esfahani, M.H. Cytotoxicity Evaluation of The Bioresorbable and Titanium Plates/Screws Used in Maxillofacial Surgery on Gingival Fibroblasts and Human Mesenchymal Bone Marrow Stem Cells. Cell J. 2019, 22, 310–318. [Google Scholar] [CrossRef]
- Singh, A.V.; Galluzzi, M.; Borghi, F.; Indrieri, M.; Vyas, V.; Podesta, A.; Gade, W.N.; Galluzzi, M. Interaction of Bacterial Cells with Cluster-Assembled Nanostructured Titania Surfaces: An Atomic Force Microscopy Study. J. Nanosci. Nanotechnol. 2013, 13, 77–85. [Google Scholar] [CrossRef]
Component | Characteristics |
---|---|
Generator | Free-running 27.12 MHz operated at 1400 W |
Plasma torch | Axial viewing, (X = −3.9 mm, Y = +3.6 mm, Z = +2.6 mm. torch position) Argon (5.0 quality) flow rates: Outer gas 12 L min−1 Intermediate gas 0.6 L min−1 Nebulizer gas 1 L min−1 |
Sample introduction system | Four channels peristaltic pump, K2 cross-flow nebulizer, double-pass Scott-type spray chamber, 2 mL min−1 sample uptake rate |
Polychromator | 160–600 nm double-grating Paschen–Runge mounting, chamber filled with nitrogen |
Detector | 22 charge-coupled devices (CCDs) |
Data processing | Background correction: linear two-point models, best signal-to-background (SNR) strategy, integration time 48 s and three successive measurements for each element. |
Analytical wavelengths | Ti 334.941 nm. |
Patient/Surgical Site | Tissue Sample Number | Titanium Particles (ppm) | Complications |
---|---|---|---|
1—Orthognathic | 1 | 1.16 ppm | None |
2 | 1.18 ppm | None | |
2—Orthognathic | 3 | 0.95 ppm | None |
4 | 0.82 ppm | None | |
3—Orthognathic | 5 | 0.68 ppm | None |
6 | 1.23 ppm | None | |
4—Orthognathic | 7 | 1.19 ppm | None |
8 | 1.09 ppm | None | |
5—Fracture site | 9 | 1.2 ppm | None |
10 | 0.99 ppm | None | |
6—Fracture site | 11 | 1.27 ppm | None |
12 | 1.3 ppm | None | |
7—Orthognathic | 13 | 1.21 ppm | None |
14 | 0.87 ppm | None | |
8—Fracture site | 15 | 1.17 ppm | None |
16 | 1.26 ppm | None | |
9—Fracture site | 17 | 0.67 ppm | None |
18 | 0.92 ppm | None | |
10—Orthognathic | 19 | 0.76 ppm | None |
20 | 1.28 ppm | None |
Average | Standard Deviation | Min | Max | |
---|---|---|---|---|
All sites | 1.06 ppm | 0.209 ppm | 0.67 ppm | 1.30 ppm |
Orthognathic | 1.03 ppm | 0.207 ppm | 0.68 ppm | 1.28 ppm |
Fracture site | 1.09 ppm | 0.219 ppm | 0.67 ppm | 1.30 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opris, H.; Armencea, G.; Manea, A.; Mitre, I.; Baciut, M.; Onișor, F.; Imre-Lucaci, F.; Vulpoi, A.; Vacaras, S.; Simion, B.; et al. Titanium Periimplant Tissue Alterations: A Prospective Cohort Plate Retrieval Study. Appl. Sci. 2021, 11, 6315. https://doi.org/10.3390/app11146315
Opris H, Armencea G, Manea A, Mitre I, Baciut M, Onișor F, Imre-Lucaci F, Vulpoi A, Vacaras S, Simion B, et al. Titanium Periimplant Tissue Alterations: A Prospective Cohort Plate Retrieval Study. Applied Sciences. 2021; 11(14):6315. https://doi.org/10.3390/app11146315
Chicago/Turabian StyleOpris, Horia, Gabriel Armencea, Avram Manea, Ileana Mitre, Mihaela Baciut, Florin Onișor, Florica Imre-Lucaci, Adriana Vulpoi, Sergiu Vacaras, Bran Simion, and et al. 2021. "Titanium Periimplant Tissue Alterations: A Prospective Cohort Plate Retrieval Study" Applied Sciences 11, no. 14: 6315. https://doi.org/10.3390/app11146315