Neuronutraceuticals Modulate Lipopolysaccharide- or Amyloid-β 1-42 Peptide-Induced Transglutaminase 2 Overexpression as a Marker of Neuroinflammation in Mouse Microglial Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Mouse Primary Microglia Isolation
2.4. Western Blot Analysis
2.5. RNA Extraction and Semi-Quantitative RT-qPCR Analysis
2.6. Statistical Analysis
3. Results
3.1. Effects of Curcumin and PEA on LPS-Induced TG2 Expression Levels in BV2 Cells
3.1.1. Effects of Curcumin and PEA on LPS-Induced TG2 RNA Expression Levels in BV2 Cells
3.1.2. TG2 Protein Levels in BV2 Cells After Treatment with Neuronutraceuticals and LPS
3.1.3. Effects of PEA on LPS-Induced TG2, Inflammatory Markers RNA Expression Levels in Murine Primary Microglial Cells
3.2. Effects of Curcumin and PEA on Aβ1-42-Induced TG2, Inflammatory or Neuroprotective Markers Expression Levels in BV2 Cells
3.2.1. Effects of Aβ1-42 on TG2 Protein Expression in BV2 Cells
3.2.2. Effects of Curcumin and PEA on Aβ1-42-Induced TG2, Inflammatory or Neuroprotective Markers RNA Expression Levels in BV2 Cells
3.2.3. TG2 Protein Levels in BV2 Cells after Treatment with Neuronutraceuticals and Aβ1-42
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Folk, J.E. Transglutaminases. Annu. Rev. Biochem. 1980, 49, 517–531. [Google Scholar] [CrossRef]
- Lorand, L.; Conrad, S.M. Transglutaminases. Mol. Cell Biol. 1984, 58, 9–35. [Google Scholar]
- Thomazy, V.; Fesus, L. Differential expression of tissue transglutaminase in human cells: An immunohistochemical study. Cell Tissue Res. 1989, 255, 215–224. [Google Scholar] [CrossRef]
- Fesus, L.; Thomazy, V.; Falus, A. Induction and activation of tissue transglutaminase during programmed cell death. FEBS (Fed. Eur. Biochem. Soc.) Lett. 1987, 224, 104–108. [Google Scholar] [CrossRef]
- Piacentini, M.; Autuori, F.; Dini, L.; Farrace, M.G.; Ghibelli, L.; Piredda, L.; Fesus, L. “Tissue” transglutaminase is specifically expressed in neonatal rat liver cells undergoing apoptosis upon epidermal growth factor stimulation. Cell Tissue Res. 1991, 263, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Fesus, L.; Davies, P.J.A.; Piacentini, M. Apoptosis: Molecular mechanisms in programmed cell death. Eur. J. Cell Biol. 1992, 56, 170–177. [Google Scholar]
- Fesus, L.; Tarcsa, E. Formation of N-ε−(γ-glutamyl)-lysine isodipeptide in chinese hamster ovary cells. Biochem. J. 1989, 263, 843–848. [Google Scholar] [CrossRef]
- Melino, G.; Annichiarico-Petruzzelli, M.; Piredda, L.; Candi, E.; Gentile, V.; Davies, P.J.A.; Piacentini, M. Tissue transglutaminase and apoptosis: Sense and antisense transfection studies with human neuroblastoma cells. Mol. Cell. Biol. 1994, 14, 6584–6596. [Google Scholar] [CrossRef][Green Version]
- Bowness, J.M.; Folk, J.E.; Timpl, R. Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen. J. Biol. Chem. 1987, 262, 1022–1024. [Google Scholar] [CrossRef]
- Slife, C.W.; Dorsett, M.D.; Tillotson, M.L. Subcellular localization and a large molecular weight substrate for the liver plasma membrane transglutaminase. J. Biol. Chem. 1986, 261, 3451–3456. [Google Scholar] [CrossRef]
- Tyrrel, D.J.; Sale, W.S.; Slife, C.W. Fibronectin is a component of the sodium dodecyl sulfate-insoluble transglutaminase substrate. J. Biol. Chem. 1988, 263, 8464–8469. [Google Scholar] [CrossRef]
- Kinsella, M.G.; Wight, T.N. Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration. J. Cell Biol. 1986, 162, 679–687. [Google Scholar] [CrossRef]
- Kinsella, M.G.; Wight, T.N. Formation of high weight dermatan sulfate proteoglycan in bovine aortic endothelial cell cultures. J. Biol. Chem. 1990, 265, 17891–17898. [Google Scholar] [CrossRef]
- Fesus, L.; Metsis, M.L.; Muszbek, L.; Koteliansky, V.E. Transglutaminase-sensitive glutamine residues of human plasma fibronectin revealed by studying its proteolytic fragments. Eur. J. Biochem. 1986, 154, 371–374. [Google Scholar] [CrossRef]
- Martinez, J.; Rich, E.; Barsigian, C. Transglutaminase-mediated cross-linking of fibrinogen by human umbilical vein endothelial cells. J. Biol. Chem. 1989, 264, 20502–20508. [Google Scholar] [CrossRef]
- Sane, D.C.; Moser, T.L.; Greenberg, C.S. Vitronectin in the substratum of endothelial cells is cross-linked and phosphorylated. Biochem. Biophys. Res. Commun. 1991, 174, 465–469. [Google Scholar] [CrossRef]
- Gentile, V.; Thomazy, V.; Piacentini, M.; Fesus, L.; Davies, P.J.A. Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: Effects on cellular morphology and adhesion. J. Cell Biol. 1992, 119, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, S.; Huang, W.; Bennett, D.A. Tissue transglutaminase and its product isopeptide are increased in Alzheimer’s disease and APPswe/PS1dE9 double transgenic mice brains. Mol. Neurobiol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmus, M.M.; de Jager, M.; Smit, A.B.; van der Loo, R.J.; Drukarch, B. Catalytically active tissue transglutaminase colocalises with Aβ pathology in Alzheimer’s disease mouse models. Sci. Rep. 2016. [Google Scholar] [CrossRef]
- Ientile, R.; Currò, M.; Caccamo, D. Transglutaminase 2 and neuroinflammation. Amino Acids 2015, 47, 19–26. [Google Scholar] [CrossRef]
- Chih-Li, L.; Jen-Kun, L. Curcumin: A potential cancer chemopreventive agent through suppressing NF-kB signaling. J. Cancer Mol. 2008, 4, 11–16. [Google Scholar]
- Lee, J.; Kim, Y.S.; Choi, D.H.; Bang, M.S.; Han, T.R.; Joh, T.H.; Kim, S.Y. Transglutaminase 2 induces nuclear factor-kB activation via a novel pathway in BV-2 microglia. J. Biol. Chem. 2004, 279, 53725–53735. [Google Scholar] [CrossRef]
- Kumar, S.; Mehta, K. Tissue transglutaminase constitutively activates HIF-1a promoter and nuclear factor-kB via a non-canonical pathway. PLoS ONE 2012, 7, e49321. [Google Scholar] [CrossRef]
- Lu, S.; Saydak, M.; Gentile, V.; Stein, J.P.; Davies, P.J.A. Isolation and characterization of the human tissue transglutaminase promoter. J. Biol. Chem. 1995, 270, 9748–9755. [Google Scholar] [CrossRef] [PubMed]
- Gatta, N.G.; Cammarota, G.; Iannaccone, M.; Serretiello, E.; Gentile, V. Curcumin (Diferulolylmethane) reduces transglutaminase 2 overexpression induced by retinoic acid in human nervous cell lines. Neuroimmunomodulation 2016, 23, 188–193. [Google Scholar] [CrossRef]
- Alessio, N.; Belardo, C.; Trotta, M.C.; Paino, S.; Boccella, S.; Gargano, F.; Pieretti, G.; Ricciardi, F.; Marabese, I.; Luongo, L.; et al. Vitamin D Deficiency Induces Chronic Pain and Microglial Phenotypic Changes in Mice. Int. J. Mol. Sci. 2021, 22, 3604. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Guida, F.; Luongo, L.; Boccella, S.; Giordano, M.E.; Romano, R.; Bellini, G.; Manzo, I.; Furiano, A.; Rizzo, A.; Imperatore, R.; et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: Involvement of the CB2 receptor. Sci. Rep. 2017, 7, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Guida, F.; Boccella, S.; Iannotta, M.; De Gregorio, D.; Giordano, C.; Belardo, C.; Romano, R.; Palazzo, E.; Scafuro, M.A.; Serra, N.; et al. Palmitoylethanolamide Reduces Neuropsychiatric Behaviors by Restoring Cortical Electrophysiological Activity in a Mouse Model of Mild Traumatic Brain Injury. Front Pharmacol. 2017, 8, 95–119. [Google Scholar] [CrossRef]
- Lo Verme, J.; Fu, J.; Astarita, G.; La Rana, G.; Russo, R.; Calignano, A.; Piomelli, D. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 2005, 67, 15–19. [Google Scholar] [CrossRef] [PubMed]
Genes and Reference Sequence Data for Nucleotide Sequences | Forward | Reverse |
---|---|---|
TG2 NM_009373.3 | 5′-ACTTCGACGTGTTTGCCCACAT-3′ | 5′-TTGATGTCCTCAGTGCCACACT-3′ |
IL6 NM_031168.2 | 5′-GATGGATGCTACCAAACTGGAT- 3′ | 5′-CCAGGTAGCTATGGTACTCCAGA-3′ |
iNOS NM_010927.4 | 5′-TGAGCTCATCTTTGCCACCA-3′ | 5′-ACAGTTCCGAGCGTCAAAGA-3′ |
IL-1β NM_008361.4 | 5′-TCGGACCCATATGAGCTGAAAG-3′ | 5′-CCACAGGTATTTTGTCGTTGCT-3′ |
TREM2 NM_031254.3 | 5′-AGCCTGACTGGCTTGGTCAT-3′ | 5′-CCCAGTGCTTCAAGGCGTCA-3′ |
ARG1 NM_007482.3 | 5′-CAGCCTCGAGGAGGGGTAGA-3′ | 5′-CCCGTGGTCTCTCACGTCAT-3′ |
GAPDH NM_001289726.1 | 5′-GGGCATCTTGGGCTACACTGAGGACC-3′ | 5′-GGGGGCCGAGTTGGGATAGGG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatta, N.G.; Parente, A.; Guida, F.; Maione, S.; Gentile, V. Neuronutraceuticals Modulate Lipopolysaccharide- or Amyloid-β 1-42 Peptide-Induced Transglutaminase 2 Overexpression as a Marker of Neuroinflammation in Mouse Microglial Cells. Appl. Sci. 2021, 11, 5718. https://doi.org/10.3390/app11125718
Gatta NG, Parente A, Guida F, Maione S, Gentile V. Neuronutraceuticals Modulate Lipopolysaccharide- or Amyloid-β 1-42 Peptide-Induced Transglutaminase 2 Overexpression as a Marker of Neuroinflammation in Mouse Microglial Cells. Applied Sciences. 2021; 11(12):5718. https://doi.org/10.3390/app11125718
Chicago/Turabian StyleGatta, Nicola Gaetano, Andrea Parente, Francesca Guida, Sabatino Maione, and Vittorio Gentile. 2021. "Neuronutraceuticals Modulate Lipopolysaccharide- or Amyloid-β 1-42 Peptide-Induced Transglutaminase 2 Overexpression as a Marker of Neuroinflammation in Mouse Microglial Cells" Applied Sciences 11, no. 12: 5718. https://doi.org/10.3390/app11125718
APA StyleGatta, N. G., Parente, A., Guida, F., Maione, S., & Gentile, V. (2021). Neuronutraceuticals Modulate Lipopolysaccharide- or Amyloid-β 1-42 Peptide-Induced Transglutaminase 2 Overexpression as a Marker of Neuroinflammation in Mouse Microglial Cells. Applied Sciences, 11(12), 5718. https://doi.org/10.3390/app11125718