# Light-Induced Ring Pattern in a Dye-Doped Nematic Liquid Crystal

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Observations of the Ring Patterns

#### 2.1. Experimental Setup

#### 2.2. Synthesis and Preparation of Dye-Dopant and Liquid Crystal Mixture

#### 2.3. Light-Induced Ring Patterns

## 3. Mathematical Modeling for Photo-Isomerization in Dye-Doped Liquid Crystals

#### 3.1. Adiabatic Elimination and Effective Model

#### 3.2. Homogeneous Illumination and Bifurcation Diagram

#### 3.3. Light-Induced Ring Pattern

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## References

- Newton, I. Opticks, or, a Treatise of the Reflections, Refractions, Inflections & Colours of Light; Sam. Smith and Benj. Walford, Printers to the Royal Society: London, UK, 1704. [Google Scholar]
- Boyd, R.W. Nonlinear Optics; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Shen, Y.R. The Principles of Nonlinear Optics; Wiley-Interscience: New York, NY, USA, 1984. [Google Scholar]
- Mills, D.L. Nonlinear Optics: Basic Concepts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- New, G. Introduction to Nonlinear Optics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Lugiato, L.; Prati, F.; Brambilla, M. Nonlinear Optical Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Oxford Science Publications, Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Chandrasekhar, S. Liquid Crystal; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Oswald, P.; Pieranski, P. Nematic and Cholesteric Liquid Crystals; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Vertogen, G.; de Jeu, W.H. Thermotropic Liquid Crystals, Fundamentals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Khoo, I.C. Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Takatoh, K.; Sakamoto, M.; Hasegawa, R.; Koden, M.; Itoh, N.; Hasegawa, M. Alignment Technology and Applications of Liquid Crystal Devices; CRC Press: Abingdon, UK, 2005. [Google Scholar]
- Zel’Dovich, B.Y.; Pilipetskii, N.F.; Sukhov, A.V.; Tabiryan, N.V. Giant Optical Nonlinearity in the Mesophase of a Nematic Liquid Crystal. JETP Lett.
**1980**, 31, 263–267. [Google Scholar] - Zolot’ko, A.S.; Kitaeva, V.F.; Sobolev, N.K.N.; Chillag, L. The effect of an optical field on the nematic phase of the liquid crystal OCBP. JETP Lett.
**1980**, 32, 158–162. [Google Scholar] - Zolot’ko, A.S.; Kitaeva, V.F.; Sobolev, N.N.; Sukhorukov, A.P. Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal. Zh. Eksp. Teor. Fiz.
**1981**, 81, 933–941. [Google Scholar] - Durbin, S.D.; Arakelian, S.M.; Shen, Y.R. Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal. Phys. Rev. Lett.
**1981**, 47, 1411–1414. [Google Scholar] [CrossRef] - Frisken, B.J.; Palffy-Muhoray, P. Electric-field-induced twist and bend Freedericksz transitions in nematic liquid crystals. Phys. Rev. A
**1989**, 39, 1513–1518. [Google Scholar] [CrossRef] - Khoo, I.C. Nonlinear optics of liquid crystalline materials. Phys. Rep.
**2009**, 471, 221–267. [Google Scholar] [CrossRef] - Jánossy, I.; Szabados, L. Photoisomerization of azo-dyes in nematic liquid crystals. J. Nonlinear Opt. Phys.
**1998**, 7, 539–551. [Google Scholar] [CrossRef] - Odent, V.; Clerc, M.G.; Falcón, C.; Bortolozzo, U.; Louvergneaux, E.; Residori, S. Photo-isomerization fronts in dye-doped nematic liquid crystals. Opt. Lett.
**2014**, 39, 1861–1864. [Google Scholar] [CrossRef][Green Version] - Andrade-Silva, I.; Bortolozzo, U.; Clerc, M.G.; González-Cortés, G.; Residori, S.; Wilson, M. Spontaneous light-induced Turing patterns in a dye-doped twisted nematic layer. Sci. Rep.
**2018**, 8, 1–8. [Google Scholar] [CrossRef] - Andrade-Silva, I.; Bortolozzo, U.; Castillo-Pinto, C.; Clerc, M.G.; González-Cortés, G.; Residori, S.; Wilson, M. Dissipative structures induced by photoisomerization in a dye-doped nematic liquid crystal layer. Phil. Trans. R. Soc. A
**2018**, 376, 20170382. [Google Scholar] [CrossRef][Green Version] - Durbin, S.D.; Arakelian, S.M.; Shen, Y.R. Laser-induced diffraction rings from a nematic-liquid-crystal film. Opt. Lett.
**1981**, 6, 411–413. [Google Scholar] [CrossRef] - Assanto, G. Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Barnik, M.I.; Zolot’ko, A.S.; Kitaeva, V.F. Interaction of light with a dye-doped nematic liquid crystal. J. Exp. Theor. Phys.
**1997**, 84, 1122–1130. [Google Scholar] [CrossRef] - Deng, L.; He, K.; Su, W.; Sun, H.; Wang, R.; Zhang, H.; Liu, H.K. Optical limiting performances of the methyl-red-dye-doped nematic liquid crystal films. Mater. Devices Syst. Disp. Lighting
**2002**, 4918, 79–89. [Google Scholar] - Li, H.; Wang, J.; Wang, C.; Zeng, P.; Cai, P.; Pan, Y.; Yang, Y. Off-resonant nonlinear optical refraction properties of azo dye doped nematic liquid crystals. Opt. Mater. Express
**2016**, 6, 459–465. [Google Scholar] [CrossRef] - Serak, S.V.; Tabiryan, N.V.; Assanto, G. Nematicons in azobenzene liquid crystals. Mol. Cryst. Liq. Cryst.
**2012**, 559, 202–213. [Google Scholar] [CrossRef] - Park, H.S.; Oh, K.S.; Kim, K.S.; Chang, T.; Spiegel, D.R. Change of internal hydrogen bonding of methyl red upon photoisomerization monitored by Forced Rayleigh Scattering. J. Phys. Chem. B
**1999**, 103, 2355–2360. [Google Scholar] [CrossRef] - Castillo-Pinto, C.; Clerc, M.G.; González-Cortés, G. Extended stable equilibrium invaded by an unstable state. Sci. Rep.
**2019**, 9, 1–8. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kosa, T.; Sukhomlinova, L.; Su, L.; Taheri, B.; White, T.J.; Bunning, T.J. Light-induced liquid crystallinity. Nature
**2012**, 485, 347–349. [Google Scholar] [CrossRef] - Kahl, D.J.; Hutchings, K.M.; Lisabeth, E.M.; Haak, A.J.; Leipprandt, J.R.; Dexheimer, T.; Khanna, D.; Tsou, P.S.; Campbell, P.L.; Fox, D.A.; et al. 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents for Scleroderma. J. Med. Chem.
**2019**, 62, 4350–4369. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Statistical Physics (Course of Theoretical Physics, Volume 5); Pergamon Press: New York, NY, USA, 1993. [Google Scholar]
- Sasaki, T.; Ikeda, T. Photochemical switching of polarization in ferroelectric liquid crystals: Effect of structure of host FLCs. Ferroelectrics
**1993**, 149, 343–351. [Google Scholar] [CrossRef] - Bechhoefer, J.; Simon, A.J.; Libchaber, A.; Oswald, P. Destabilization of a flat nematic-isotropic interface. Phys. Rev. A
**1989**, 40, 2042–2056. [Google Scholar] [CrossRef] [PubMed] - Haken, H. Synergetics: Introduction and Advanced Topics; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Clerc, M.G.; Petrossian, A.; Residori, S. Bouncing localized structures in a liquid-crystal light-valve experiment. Phys. Rev. E
**2005**, 71, 015205. [Google Scholar] [CrossRef][Green Version] - Kozyreff, G.; Tlidi, M. Nonvariational real Swift-Hohenberg equation for biological, chemical, and optical systems. Chaos
**2007**, 17, 037103. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kozyreff, G.; Chapman, S.J.; Tlidi, M. Interaction of two modulational instabilities in a semiconductor resonator. Phys. Rev. E
**2003**, 68, 015201. [Google Scholar] [CrossRef] [PubMed][Green Version] - Clerc, M.G.; Verschueren, N. Quasiperiodicity route to spatiotemporal chaos in one-dimensional pattern-forming systems. Phys. Rev. E
**2013**, 88, 052916. [Google Scholar] [CrossRef][Green Version] - Burke, J.; Dawes, J.H. Localized states in an extended Swift?Hohenberg equation. SIAM J. Appl. Dyn. Syst.
**2012**, 11, 261–284. [Google Scholar] [CrossRef][Green Version] - Alvarez-Socorro, A.J.; Clerc, M.G.; Tlidi, M. Spontaneous motion of localized structures induced by parity symmetry breaking transition. Chaos
**2018**, 28, 053119. [Google Scholar] [CrossRef][Green Version] - Houghton, S.M.; Knobloch, E. Swift-Hohenberg equation with broken cubic-quintic nonlinearity. Phys. Rev. E
**2011**, 84, 016204. [Google Scholar] [CrossRef][Green Version] - Verschueren, N.; Bortolozzo, U.; Clerc, M.G.; Residori, S. Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback. Phys. Rev. Lett.
**2013**, 110, 104101. [Google Scholar] [CrossRef] - Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B
**1952**, 237, 37–72. [Google Scholar] - Goldstein, R.E.; Gunaratne, G.H.; Gil, L.; Coullet, P. Hydrodynamic and interfacial patterns with broken space-time symmetry. Phys. Rev. A
**1991**, 43, 6700–6721. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Ring patterns induced by light in a dye-doped liquid crystal cell (DDLCC). (

**a**) Schematic representation of the experimental system. The blue and red bars, respectively, account for the molecules of the liquid crystal and azo-dye. The cell is illuminated by a blue and green beam. The snapshot accounts for the observed ring patterns. A transversal plane in the DDLCC is schematically represented. The areas under higher blue laser irradiation are more disordered, while the zones less illuminated preserve the nematic order. (

**b**) Isomers of the molecule methyl red methyl ester. (

**c**) Two snapshots showing the observed pattern (upper panel) and snapshot with the beam that induces photo-isomerization superimposed (bottom panel).

**Figure 2.**Experimental setup for the dye-doped nematic liquid crystal phototropic transition with a harmless external illumination. (

**a**) A dye-doped liquid crystal cell (DDLCC) is irradiated by a $445$ nm blue laser (excitation light beam) ${L}_{B}$ and illuminated by a $532$ nm green laser (probing light beam) ${L}_{G}$. Two pairs of lenses are placed in a Kepler telescope configuration ${K}_{B}$ and ${K}_{G}$ to expand the laser beam while preserving the collimation. ${\overrightarrow{P}}_{B}$ and ${\overrightarrow{P}}_{G}$ are the polarization of the laser sources. A long-wave pass dichroic mirror $DM$ is used to set both excitation and probing on the same optical line. After the DDLCC, another long-wave pass dichroic mirror is used to filter out the excitation beam. An analyzer in a crossed configuration with respect to $\overrightarrow{{P}_{G}}$. A set of imaging optics $IL$ consisting on a $\times 2$ Kepler telescope and a $\times 7$ zoom lens is used to enhance the image captured by the 1/2″ CCD camera. (

**b**) Absorption spectrum of methyl red methyl ester in dichloromethane 2.0 × 10${}^{-5}$ mol/L. The solid vertical lines account for the wavelength of the exciting and probing light, respectively. Vertical dashed lines account for the absorption maximum.

**Figure 3.**Experimental ring pattern emergence induced by a blue light (with a 445 nm wavelength) applied to a dye-doped liquid crystal cell, E7 NLC with azo-dye methyl red methyl ester at a concentration of 1 wt%. (

**a**) Temporal evolution of transmitted total intensity, measured in the green channel of the CCD camera ($\Delta {I}_{g}$) with respect to the transmitted light without the blue light beam (${I}_{g,0}$). The points were obtained experimentally, and the continuous curve was acquired using the expression $\Delta {I}_{g}\left(t\right)/{I}_{g,0}=A(1-{e}^{t/\tau})$, where $A=2.79$ and $\tau =55.71$ s. Painted areas I and II account for the growth and saturation regions, respectively. (

**b**) Temporal sequence of snapshots in the ring pattern formation process (${t}_{0}=0$ s, ${t}_{1}=1$ s, ${t}_{2}=5$ s, ${t}_{3}=84$ s, ${t}_{4}=360$ s, and ${t}_{5}=570$ s). (

**c**) Spatiotemporal diagram evolution of a diameter cut section.

**Figure 4.**Equilibria ring patterns were experimentally observed for different powers of the blue light beam. After a long period of evolution, snapshots were observed for different powers, as denoted in the lower part of each snapshot.

**Figure 5.**Schematic representation of the bifurcation diagram of the effective model in Equation (15) with constant coefficients. The order parameter S as a function of the bifurcation parameter $\tilde{A}$. ${S}_{0}$, ${S}_{+}$, and ${S}_{-}$ account for the isotropic liquid and nematic phases, respectively. The continuous and dashed lines account for stable and unstable states respectively. ${A}_{sn}$, ${A}_{M}$, and ${A}_{T}$ are the critical points that account for the emergence of the nematic phase; both phases are equally favored, with a transcritical bifurcation of the isotropic liquid phase. ${A}_{sp}$, ${A}_{sp}^{+}$, and ${A}_{sp}^{-}$ account for the spatial instabilities of the homogeneous phases. The painted area shows the region of coexistence between the periodic state and the homogeneous state. The decorated curve explains the amplitude of the patterns.

**Figure 6.**Numerical stationary ring pattern in a dye-doped nematic liquid crystal using the effective model in Equation (9) for $\tilde{A}=-0.5$, $\tilde{B}=0.3$, $\nu =1.05$, $b=0.1$, ${I}_{0}=1.45$, and $w=4$. (

**a**) Contour plot of the squared order parameter S. (

**b**) Profile of the cut of the order parameter S in the diameter of the ring pattern. (

**c**) Surface plot of the squared order parameter S.

**Figure 7.**Numerical light-induced ring pattern in a dye-doped nematic liquid crystal using the model in Equation (9). (

**a**) Temporal evolution of ring pattern using the effective model in Equation (9) for $\tilde{A}=-0.5$, $\tilde{B}=0.3$, $\nu =1.05$, $b=0.1$, ${I}_{0}=1.45$, and $w=4$. (

**b**) Equilibrium of ring patterns numerically obtained for a different forcing strength ${I}_{0}$, and the other parameters are $\tilde{A}=-0.5$, $\tilde{B}=0.3$, $\nu =1.05$, $b=0.1$, and $w=4$.

**Figure 8.**Manipulable ring patterns induced by illumination on a dye-doped liquid crystal sample. (

**a**) Schematic representation of the mechanism for applying the light beam to the dye-doped liquid crystal sample. (

**b**) Schematic representation of the path made by the light beam by adjusting the pitch and yaw of the dichroic mirror. (

**c**) Snapshots of ring patterns observed at different times (${t}_{1}<{t}_{2}<{t}_{3}<{t}_{4}$).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Clerc, M.G.; González-Cortés, G.; Hidalgo, P.I.; Letelier, L.A.; Morel, M.J.; Vergara, J.
Light-Induced Ring Pattern in a Dye-Doped Nematic Liquid Crystal. *Appl. Sci.* **2021**, *11*, 5285.
https://doi.org/10.3390/app11115285

**AMA Style**

Clerc MG, González-Cortés G, Hidalgo PI, Letelier LA, Morel MJ, Vergara J.
Light-Induced Ring Pattern in a Dye-Doped Nematic Liquid Crystal. *Applied Sciences*. 2021; 11(11):5285.
https://doi.org/10.3390/app11115285

**Chicago/Turabian Style**

Clerc, Marcel G., Gregorio González-Cortés, Paulina I. Hidalgo, Lucciano A. Letelier, Mauricio J. Morel, and Jorge Vergara.
2021. "Light-Induced Ring Pattern in a Dye-Doped Nematic Liquid Crystal" *Applied Sciences* 11, no. 11: 5285.
https://doi.org/10.3390/app11115285