Novel Approaches for the Treatment of Necrotic Immature Teeth Using Regenerative Endodontic Procedures: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria and Participant Characteristics of Studies
- Population: Patients with NIT.
- Interventions: REPs including: 1. Stem Cells, 2. Platelet-rich plasma, 3. Scaffolds, or 4. Growth factors.
- Comparator: Apexification, or REPs using only BC, or some variant of the studied intervention as the control group.
- Outcomes: Root length, or apical diameter, or clinical success (resolution of symptomatology).
- The keywords and algorithms used for the search strategy are shown in Supplementary Materials Table S1.
- Question of the review: What is the effectiveness (measured as increase of the root length, or changes of the apical diameter, or clinical success) of the different REP with scaffolds in comparison with REPs using only BC as control groups, in patients with NIT from clinical trials?
2.3. Database Search
2.4. Study Selection
2.5. Data Collection Process and Data Items
2.6. Risk of Bias in Individual Studies and Quality Assessment
2.7. Strategy for Data Synthesis
3. Results
3.1. Clinical Success
3.2. Root Length
3.3. Changes in Apical Diameter
3.4. Dentin Thickness
3.5. Bone Density
3.6. Pulp Sensibility (Vital Test)
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araújo, P.R.S.; Silva, L.B.; Neto, A.; Almeida de Arruda, J.A.; Álvares, P.R.; Sobral, A.P.V.; Júnior, S.A.; Leão, J.C.; Braz da Silva, R.; Sampaio, G.C. Pulp revascularization: A literature review. Open Dent. J. 2017, 10, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.L. Therapy for the divergent pulpless tooth by continued apical formation. J. Am. Dent. Assoc. 1966, 72, 87–93. [Google Scholar] [CrossRef]
- Andreasen, J.O.; Farik, B.; Munksgaard, E.C. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent. Traumatol. 2002, 18, 134–137. [Google Scholar] [CrossRef]
- Huang, G.T. Apexification: The beginning of its end. Int. Endod. J. 2009, 42, 855–866. [Google Scholar] [CrossRef]
- Nygaard Østby, B. Nyere undersökelser over rotbehandlings-problemet. Odontol. Tidskr. 1963, 71, 467–478. [Google Scholar]
- Palma, P.J.; Martins, J.; Diogo, P.; Sequeira, D.; Ramos, J.C.; Diogenes, A.; Santos, J.M. Does apical papilla survive and develop in apical periodontitis presence after regenerative endodontic procedures? Appl. Sci. 2019, 9, 3942. [Google Scholar] [CrossRef] [Green Version]
- Diogenes, A.; Hargreaves, K.M. Microbial modulation of stem cells and future directions in regenerative endodontics. J. Endod. 2017, 43 (Suppl. 9), S95–S101. [Google Scholar] [CrossRef]
- Kaushik, S.N.; Kim, B.; Walma, A.M.; Choi, S.C.; Wu, H.; Mao, J.J.; Jun, H.W.; Cheon, K. Biomimetic microenvironments for regenerative endodontics. Biomater. Res. 2016, 20, 14. [Google Scholar] [CrossRef] [Green Version]
- Alagl, A.; Bedi, S.; Hassan, K.; AlHumaid, J. Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: Clinical and cone-beam computed tomography evaluation. J. Med. Res. 2017, 45, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. Rob 2: A revised tool for assessing risk of bias in randomised trials. Br. Med. J. 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosrat, A.; Kolahdouzan, A.; Khatibi, A.H.; Verma, P.; Jamshidi, D.; Nevins, A.J.; Torabinejad, M. Clinical, radiographic, and histologic outcome of regenerative endodontic treatment in human teeth using a novel collagen-hydroxyapatite scaffold. J. Endod. 2019, 45, 136–143. [Google Scholar] [CrossRef]
- Jadhav, G.; Shah, N.; Logani, A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: A pilot clinical study. J. Endod. 2012, 38, 1581–1587. [Google Scholar] [CrossRef]
- Bezgin, T.; Yilmaz, A.D.; Celik, B.N.; Kolsuz, M.E.; Sonmez, H. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J. Endod. 2015, 41, 36–44. [Google Scholar] [CrossRef]
- Chan, E.K.M.; Desmeules, M.; Cielecki, M.; Dabbagh, B.; Ferraz dos Santos, B. Longitudinal cohort study of regenerative endodontic treatment for immature necrotic permanent teeth. J. Endod. 2017, 43, 395–400. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Mei, L.; Li, J. Clinical and radiographic outcomes in immature permanent necrotic evaginated teeth treated with regenerative endodontic procedures. J. Endod. 2017, 43, 246–251. [Google Scholar] [CrossRef]
- Kahler, B.; Mistry, S.; Moule, A.; Ringsmuth, A.K.; Case, P.; Thomson, A.; Holcombe, T. Revascularization outcomes: A prospective analysis of 16 consecutive cases. J. Endod. 2014, 40, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Sutam, N.; Jantarat, J.; Ongchavalit, L.; Sutimuntanakul, S.; Hargreaves, K.M. A comparison of 3 quantitative radiographic measurement methods for root development measurement in regenerative endodontic procedures. J. Endod. 2018, 44, 1665–1670. [Google Scholar] [CrossRef]
- Narang, I.; Mittal, N.; Mishra, N. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: A clinical study. Contemp. Clin. Dent. 2015, 6, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Nagy, M.M.; Tawfik, H.E.; Hashem, A.A.; Abu-Seida, A.M. Regenerative potential of immature permanent teeth with necrotic pulps after different regenerative protocols. J. Endod. 2014, 40, 192–198. [Google Scholar] [CrossRef]
- Shivashankar, V.Y.; Johns, D.A.; Maroli, R.K.; Sekar, M.; Chandrasekaran, R.; Karthikeyan, S.; Renganathan, S.K. Comparison of the effect of prp, prf and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: A triple blind randomized clinical trial. J. Clin. Diagn. Res. 2017, 11, Zc34–zc39. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, H.; Peng, C. Clinical and radiographic assessment of the efficacy of a collagen membrane in regenerative endodontics: A randomized, controlled clinical trial. J. Endod. 2017, 43, 1465–1471. [Google Scholar] [CrossRef]
- Santhakumar, M.; Yayathi, S.; Retnakumari, N. A clinicoradiographic comparison of the effects of platelet-rich fibrin gel and platelet-rich fibrin membrane as scaffolds in the apexification treatment of young permanent teeth. J. Indian. Soc. Pedod. Prev. Dent. 2018, 36, 65–70. [Google Scholar]
- Ragab, R.A.; Lattif, A.; Dokky, N. Comparative study between revitalization of necrotic immature permanent anterior teeth with and without platelet rich fibrin: A randomized controlled trial. J. Clin. Pediatr. Dent. 2019, 43, 78–85. [Google Scholar] [CrossRef]
- Ulusoy, A.T.; Turedi, I.; Cimen, M.; Cehreli, Z.C. Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: A prospective randomized trial. J. Endod. 2019, 45, 560–566. [Google Scholar] [CrossRef]
- Rizk, H.M.; Al-Deen, M.S.S.; Emam, A.A. Regenerative endodontic treatment of bilateral necrotic immature permanent maxillary central incisors with platelet-rich plasma versus blood clot: A split mouth double-blinded randomized controlled trial. Int. J. Clin. Pediatr. Dent. 2019, 12, 332–339. [Google Scholar] [CrossRef]
- ElSheshtawy, A.S.; Nazzal, H.; El Shahawy, O.I.; El Baz, A.A.; Ismail, S.M.; Kang, J.; Ezzat, K.M. The effect of platelet-rich plasma as a scaffold in regeneration/revitalization endodontics of immature permanent teeth assessed using 2-dimensional radiographs and cone beam computed tomography: A randomized controlled trial. Int. Endod. J. 2020, 53, 905–921. [Google Scholar] [CrossRef] [PubMed]
- Rizk, H.M.; Salah Al-Deen, M.S.M.; Emam, A.A. Comparative evaluation of platelet rich plasma (prp) versus platelet rich fibrin (prf) scaffolds in regenerative endodontic treatment of immature necrotic permanent maxillary central incisors: A double blinded randomized controlled trial. Saudi Dent. J. 2020, 32, 224–231. [Google Scholar] [CrossRef]
- Bonte, E.; Beslot, A.; Boukpessi, T.; Lasfargues, J.-J. Mta versus ca(oh)2 in apexification of non-vital immature permanent teeth: A randomized clinical trial comparison. Clin. Oral Investig. 2015, 19, 1381–1388. [Google Scholar] [CrossRef]
- Andreasen, F.M.; Andreasen, J.O.; Bayer, T. Prognosis of root-fractured permanent incisors—prediction of healing modalities. Dent. Traumatol. 1989, 5, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.K.; Lim, G.S.; Singh, M.; Fial, A.V. Quantitative assessment of root development after regenerative endodontic therapy: A systematic review and meta-analysis. J. Endod. 2020, 46, 1856–1866.e2. [Google Scholar] [CrossRef]
- Marx, R.E. Platelet-rich plasma: Evidence to support its use. J. Oral Maxillofac. Surg. 2004, 62, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Curiel, B.X.; Gómez-Aguirre, J.N.; Gijón-Soriano, A.L.; Acevedo-Mascarúa, A.E.; Argueta-Figueroa, L.; Torres-Rosas, R. Intervenciones complementarias para el tratamiento de dolor en pacientes con alteraciones temporomandibulares: Una revisión sistemática. Rev. Int. Acupunt. 2020, 14, 151–159. [Google Scholar]
- Franchini, M.; Cruciani, M.; Mengoli, C.; Masiello, F.; Marano, G.; D’Aloja, E.; Dell’Aringa, C.; Pati, I.; Veropalumbo, E.; Pupella, S.; et al. The use of platelet-rich plasma in oral surgery: A systematic review and meta-analysis. Blood Transfus. 2019, 17, 357–367. [Google Scholar]
- Nasirzade, J.; Kargarpour, Z.; Hasannia, S.; Strauss, F.J.; Gruber, R. Platelet-rich fibrin elicits an anti-inflammatory response in macrophages in vitro. J. Periodontol. 2020, 91, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Kandemir Demirci, G.; Güneri, P.; Çalışkan, M.K. Regenerative endodontic therapy with platelet rich fibrin: Case series. J Clin. Pediatr. Dent. 2020, 44, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, H.; Esmaeili, S.; Fakhr Tabatabayi, S.; Ellini, M.R.; Nekoofar, M.H.; Dummer, P.M. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: A case series. J. Endod. 2017, 43, 401–408. [Google Scholar] [CrossRef]
- Murray, P.E. Platelet-rich plasma and platelet-rich fibrin can induce apical closure more frequently than blood-clot revascularization for the regeneration of immature permanent teeth: A meta-analysis of clinical efficacy. Front. Bioeng. Biotechnol. 2018, 6, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaz, A.; Shah, F.A. Regenerating the pulp-dentine complex using autologous platelet concentrates: A critical appraisal of the current histological evidence. Tissue Eng. Regen. Med. 2021, 18, 37–48. [Google Scholar] [CrossRef]
- Babo, P.S.; Pires, R.L.; Reis, R.L.; Gomes, M.E. Membranes for periodontal tissues regeneration. Ciência Tecnol. Mater. 2014, 26, 108–117. [Google Scholar] [CrossRef]
- Zeb Khan, S.; Mirza, S.; Karim, S.; Inoue, T.; Bin-Shuwaish, M.S.; Al Deeb, L.; Al Ahdal, K.; Al-Hamdan, R.S.; Maawadh, A.M.; Vohra, F.; et al. Immunohistochemical study of dental pulp cells with 3d collagen type i gel in demineralized dentin tubules in vivo. Bosn. J. Basic Med. Sci. 2020, 20, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Humpe, A.; Kletsas, D.; Warnke, F.; Becker, S.T.; Douglas, T.; Sivananthan, S.; Warnke, P.H. Proliferation assessment of primary human mesenchymal stem cells on collagen membranes for guided bone regeneration. Int. J. Oral. Maxillofac. Implants. 2011, 26, 1004–1010. [Google Scholar]
- Staffoli, S.; Plotino, G.; Nunez Torrijos, B.G.; Grande, N.M.; Bossù, M.; Gambarini, G.; Polimeni, A. Regenerative endodontic procedures using contemporary endodontic materials. Materials 2019, 12, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaya, S.I.; Ikawa, M.; Kubota, M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent. Traumatol. 2001, 17, 185–187. [Google Scholar] [CrossRef] [Green Version]
- Geisler, T.M. Clinical considerations for regenerative endodontic procedures. Dent Clin North Am 2012, 56, 603–626. [Google Scholar] [CrossRef]
- Altaii, M.; Richards, L.; Rossi-Fedele, G. Histological assessment of regenerative endodontic treatment in animal studies with different scaffolds: A systematic review. Dent. Traumatol. 2017, 33, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Fedele, M.; Gualillo, O.; Vecchione, A. Animal models of human pathology. J. Biomed. Biotechnol. 2011, 2011, 764618. [Google Scholar] [CrossRef] [Green Version]
Article | Patients Age/Sex | Intervention | Medication | Preparation of Scaffold | Restoration | Outcomes | Results |
---|---|---|---|---|---|---|---|
Nagy et al. [20] | Immature necrotic permanent maxillary central incisors. (n = 36) Age: 9–13 years G1: M (n = 7), F (n = 5) G2: M (n = 5), F:(n = 7) G3: M (n = 6), F (n = 5) | G1: MTA (n = 12) G2: BC (n = 12) G3: BC + FGF (n = 12) | Irrig: 2.6% NaClO ABX (MTZ, CPO and doxycycline) TS: Coltosol F Time: 3 weeks | 150 mg FGF + 300 mL phosphate-buffered saline + 2-mg dried gelatin hydrogel sheet. | MTA and Adhesive composite resin. † | Clinical success (CLS) Increase in Root Length (IRL) Decrease in the Apical Diameter (DAD) Increase in Root Thickness (IRT) Decrease in Bone Density (DBD) | CLS: |
G1: 100% 12/12 G2: 90% 11/12 G3: 80% 10/12 | |||||||
IRL: n (%) | |||||||
3 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.3 ± 0.2 (3 ± 3.5) B, G3: 0.3 ± 0.2 (3 ± 2) B, (p < 0.001 *). | |||||||
6 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.6 ± 0.3 (5.3 ± 2.6) B, G3: 0.6 ± 0.3 (6.1 ± 3) B, (p < 0.001 *). | |||||||
12 months: | |||||||
G1:0 ± 0 (0 ± 0) A, G2: 0.8 ± 0.5 (7.6 ± 4.7) B, G3: 1 ± 0.5 (9.9 ± 4.9) B, (p < 0.001 *). | |||||||
18 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2:1.2 ± 0.5 (11.8 ± 4.9) B, G3: 1.3 ± 0.5 (12.4 ± 4.7) B, (p < 0.001 *). | |||||||
DAD: n (%) | |||||||
3 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.08 ± 0.04 (6.4 ± 3.2) B, G3: 0.06 ± 0.04 (5.7 ± 3.7) B, (p < 0.001). | |||||||
6 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.22 ± 0.11 (17.6 ± 8.8) B, G3: 0.15 ± 0.08 (12.6 ± 6.7) B, (p < 0.001). | |||||||
12 months: | |||||||
G1:0 ± 0 (0 ± 0) A, G2: 0.67 ± 0.04 (34.6 ± 2) B, G3: 0.59 ± 0.41 (29.9 ± 20.7) B, (p < 0.001). | |||||||
18 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.8 ± 0.3 (50.5 ± 18.9) B, G3: 0.9 ± 0.2 (44.3 ± 9.8) B, (p < 0.0001). | |||||||
IRT: n (%) | |||||||
3 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.04 ± 0.03 (1.8 ± 1.3) B, G3: 0.06 ± 0.01 (2.3 ± 1.4) B, (p < 0.001). | |||||||
6 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.14 ± 0.03 (5.8 ± 1.2) B, G3: 0.11 ± 0.04 (4.5 ± 1.6) B, (p < 0.001). | |||||||
12 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.21 ± 0.08 (8.4 ± 3.2) B, G3: 0.2 ± 0.07 (8.3 ± 2.9) B, (p < 0.001). | |||||||
18 months: | |||||||
G1: 0 ± 0 (0 ± 0) A, G2: 0.32 ± 0.12 (12.7 ± 4.7) B, G3: 0.29 ± 0.09 (11.6 ± 3.6) B | |||||||
DBD: (%) | |||||||
3 months: | |||||||
G1: 4.47 ± 5.6, G2: 2.21 ± 1.9, G3: 2.51 ± 2.1 (p = 0.2664). | |||||||
6 months (%): | |||||||
G1: 8.71 ± 3.2, G2: 6.43 ± 2.1, G3: 5.26 ± 3.7 (p = 0.1941). | |||||||
12 months (%): | |||||||
G1: 11.25 ± 7.8, G2: 10.91 ± 6.2, G3: 9.56 ± 5.8, (p = 0.8073). | |||||||
18 months (%): | |||||||
G1:14.61 ± 7.1, G2: 12.77 ± 5.5, G3: 12.21 ± 6, (p = 0.6191). | |||||||
Alagl et al. [1] | Young, immature teeth and single-rooted with apical periodontitis. Patients Age: 8-11 years M (n = 9) F (n = 6) Teeth (n = 30) | G1: PRP (n = 15) G2: BC (n = 15) | Irrig: 1.5% NaCl and 0.12% chlorhexidine. ABX (MTZ, CPO and MNO) TS: zinc oxide– eugenol cement. Time: 3 weeks | PRP + equal volumes of sterile saline solution containing 10% calcium chloride and sterile bovine thrombin (100 U/mL). | MTA and Glass ionomer cement (Fuji VII; GC, Tokyo, Japan), and composite resin (Filtek Z350; 3M ESPE, St. Paul, MN) | Clinical success (CLS) Vitality test (VT) Lesion size Bone density Root length Complete apical closure Pre-and post-treatment comparison of parameters (CPPP) | CLS: G1:100% G2:100% |
VT: G1: Positive: 12 teeth, Negative: 3 teeth G2: Positive: 6 teeth, Negative: 9 teeth | |||||||
Lesion size (mm): Mean (SD) G1: 2.41 (0.80), G2: 2.06 (0.84), (p = 0.157) | |||||||
Bone density (HU): Mean (SD) G1: 365.3 (127.50), G2: 316.4 (123.31), (p = 0.132). | |||||||
Root length (mm): Mean (SD) G1: 1.06 (0.62), G2: 0.502 (0.42), (p = 0.004 *) | |||||||
Complete apical closure: G1: 14/15 G2: 8/15 | |||||||
CPPP: G1: mean (SD) Lesion size (mm) initial:3.92 (1.46), follow up: 1.50 (1.08), (p = 0.001 *). | |||||||
Bone density (HU) initial: 120.56 (61.47), follow-up: 485.88 (154.15), (p = 0.001 *). Root length (mm) initial:11.08 (3.02), follow-up: 12.14 (3.32), (p = 0.001 *). | |||||||
G2: mean (SD) Lesion size (mm): initial: 4.02 (1.59), follow-up: 1.95 (1.16), (p = 0.001 *). | |||||||
Bone density (HU): initial: 129.00 (58.27), follow-up: 445.44 (153.54), (p = 0.001 *) Root length (mm): initial: 11.30 (3.10), follow-up: 11.80 (3.28), (p = 0.001 *). | |||||||
Shivashankar, et al. [21] | Patients with non vital, immature anterior teeth Aged: 6–28 years M (n = 32) F (n = 28) | G1:PRF (n = 20) G2: BC (n = 20) G3: PRP (n = 20) | Irrig: 5.25% NaCl Metronidazole, ciprofloxacin, and minocycline. TS: Intermediate restorative material †♦ Time: 3 weeks | No data | MTA. † | The clinical and radiographic success (CRS) Sensitivity and Response Test. (SRT), percussion sensitivity and response tests Radiographic success (RCS): Increase in root length (IRL) lateral wall thickness (LWT) Comparison of periapical healing (CPH) Vitality Test (VT) Apical foramen responses (PAI) | CRS: |
Clinical criteria of success G1: 18 complete successes, 2 failures. G2: 15/15 complete success G3: 19/19 complete success (χ2 = 3.531), (p = 0.171) | |||||||
SRT: | |||||||
12 months (%): | |||||||
G1: 15% positive G2: 13.30% positive G3: 15.8% positive | |||||||
RCS: | |||||||
G1: 15 complete successes, 3 incomplete successes, and 2 failures. G2. 12 complete successes and 3 incomplete successes. G3: 19 complete successes. (χ2 = 7.630), (p = 0.106) | |||||||
RCS: | |||||||
Loose Criteria of Success: G1: 18 successes and 2 failure G2: 15 success G3: 19 success (χ2 = 3.531), (p = 0.171) | |||||||
Strict Criteria of Success: G1: 15 successes and 5 failure G2: 12 successes and 3 failure G3: 19 success (χ2 = 5.268), (p = 0072) | |||||||
IRL: at 12 months G1: 30% good, 35% satisfactory, and 35% no change. G2: 26.7% good, 60% satisfactory and 13.3% no change. G3: 26.3% good, 57.9% satisfactory and 15.8% no change | |||||||
LWT: at 12 months G1: 30% good, 40% satisfactory and 30% no change G2: 20% good, 73.3% satisfactory and 6.7% no change. G3: 26.3% good, 57.9 satisfactory, and 15.8 no change. | |||||||
CPH: Mean±SD | |||||||
6th Month G1: 3.20 ± 0.410 (n = 20) G2: 2.93 ± 0.458 (n = 15) G3: 2.74 ± 0.562 (n = 19) (F = 4.549) (p = 0.015) | |||||||
12th Month G1: 1.85 ± 1.040 (n = 20) G2: 2.07 ± 0.594 (n = 15) G3: 1.32 ± 0.478 (n = 19) (F = 4.524) (p = 0.016) | |||||||
VT: 12th Month G1: 15% positive, 85% negative G2: 13.3% positive, 86.7 negative G3: 15.8% positive, 84.2 negative | |||||||
PAI: 12th Month G1: Type 1 (n = 2) 10%, Type 2 (n = 2) 10%, Type 3 (n = 10) 50%, Type 4 (n = 1) 5%, Type 5 (n = 1) 5%, No Change (n = 4) 20%, Total (n = 20) 100%. G2: Type 1 (n = 2) 13.3%, Type 2 (n = 3) 20%, Type 3 (n = 8) 53.3%, Type 4 (n = 0) 0%, Type 5 (n = 1) 6.7%, No Change (n = 1) 6.7%, Total (n = 15) 100%. G3: Type 1 (n = 2) 10.5%, Type 2 (n = 2) 10.5%, Type 3 (n = 12) 63.2%, Type 4 (n = 0) 0%, Type 5 (n = 0) 0%, No Change (n = 3) 15.8%, Total (n = 19) 100%. | |||||||
Jiang et al. [22] | Pediatric Patients with immature teeth affected by pulp and periapical diseases. (n = 46) G1: Age: 10.3 ± 1.9 M (n = 9), F (n = 11) G2: Age: 9.82 ± 1.5 M (n = 8) F (n = 12) | G1: BC + CMB (n = 23) G2: BC (n = 23) | Irrig: 1.25% NaCl Ca(OH)2 paste TS: 3–4 mm glass ionomer Time: 2 weeks | Bio-Gide collagen membrane. | MTA and Composite resin (3M ESPE, Irvine, CA; 3–4 mm) | Clinical success (CLS) Increase in root length (IRL) Change in root length Increase in dentin wall thickness in the apical third of the root (IWTA) Increase in dentin wall thickness in the middle third of the root (IWTM) Narrowing of apicalforamen width (NAF) Discoloration Calcification Electric pulp test. (EPT) Changes dimensions in Root length (CDRL) Changes in dimensions of the dentin wall thickness at the apical third of the root. (CDTA) Changes in dimensions of the dentin wall thickness at the middle third of the root (CDTM) Changes in dimensions of the dentin wall thickness at the apical foramen width (WF) | CLS: G1: 100% G2: 100% |
IRL n (%): G1: 21 (100%) G2: 22 (100%) | |||||||
Change in root length: G1: 16.40% ± 13.6% G2: 15.4% ± 13.6% (p > 0.05) | |||||||
IWTA: G1:18 (86%) G2: 20 (91%) | |||||||
IWTM: G1: 21 (100%) G2: 12 (55%) | |||||||
NAF: G1: 21 (100%) G2: 20 (91%) | |||||||
Discoloration: G1: 15 (71%) G2: 14 (64%) | |||||||
Calcification: G1: 10 (48%) G2: 12 (55%) | |||||||
EPT: G1: 7 (33%) G2: 4 (18%) | |||||||
CDRL: G1: 16.4 ± 13.6 G2: 15.4 ± 13.6 | |||||||
CDTA: G1: 21.5 ± 22.5 G2: 21.2 ± 19.5 | |||||||
CDTM: G1: 23.8 ± 21 G2: 6.9 ± 14 | |||||||
WF: G1: −65 ± 34 G2: −55 ± 34 | |||||||
Santhakumar, et al. [23] | Patients with maxillary central incisor immature non-vital. (n = 40) Age: 7–12 years†. | G1: PRF gel (n = 20) G2: PRF membrane as scaffold (n = 20) | Irrig: 3.0% NaCl. ABX (MTZ, CPO, and MNO) TS: Intermediate restorative material†. Time: 3 weeks | PRF by 5 mL of blood at 3000 rpm for 10 min gel. Membrane obtained by PRF gel compression †. | MTA, type II glass ionomer (Fugi 2) cement, and composite material (3 M ESPE). | Clinical success (CLS) Radiographic success (RCS) | CLS: at 18 months G1: positive 18, negative 1 G2: positive 18, negative 1 (p = 0.757) |
RCS: at 18 months G1: positive 18, negative 1 G2: positive 17, negative 2 (p = 1.00) | |||||||
Ragab, et al. [24] | Patients with maxillary central incisor immature non-vital. (n = 22) Age: 7–12 years†. M (n = 32) F (n = 28) | G1: BC (n = 11) G2: BC + PRF (n = 11) | Irrig: 5.0% NaCl. ABX: (MTZ, CPO) TS: Intermediate restorative material, glass ionomer cement (KetacCemEasymix, 3M Deutschland GmbH, Germany Time: 3 weeks | PRF by 12 mL of blood at 3000 rpm for 12 min | MTA (Productos Odontológicos S/A, Brasil), glass ionomer (SD I, Victoria, Australia) | Clinical success (CLS) Increase in root length (IRL) Apical and cervical barriers calcific (ACBC) | CLS: G1:100% G2:100% |
IRL: G1: 6 months 7.7%, 12 months 14.8%. G2: 6 month 8.8%, 12 months 12.3% (no data of SD) No statistically significant difference between the two groups | |||||||
ACBC: G1: cervical 4 cases (36.4%); apical 5 cases (45.4%); both cervical and apical in the same tooth 1 case (9%); no calcific barriers observed 3 cases (27%). G2: cervical 4 cases (36.4%); apical 7 cases (63.6%); both cervical and apical in the same tooth 3 cases (27%); no calcific barriers observed 3 cases (27%). | |||||||
Ulusoy, et al. [25] | Patients with incisor immature non-vital. (n = 88 teeth) Age: (8–11) | G1: PRP (n = 18) G2:PRF (n = 17) G3: PP (n = 17) G4: BC (n = 21) | Irrig: 1.25% NaCl. Metronidazole, ciprofloxacin, and clindamycin. TS: 4 mm glass ionomer cement (Fuji IX; GC America, Alsip, IL). Time: 4 weeks | PRP: 20 mL of blood + 15 mL citrate solution at 1250 rpm for 15 min. PRF: 10 mL blood at 3000 rpm for 10 min without anticoagulant PP: PRP was obtained without erythrocytes and leukocytes as with the PRP group, and then a second centrifugation was performed for 10 min at 4000 rpm. | MTA ProRoot Dentsply Tulsa, glass ionomer base, the final resin restoration (Filtek; 3 M ESPE, St Paul, MN) | Clinical success (CLS) Changes in Root Dimensions at the Follow-up Time (CDRT) Increase in root width (IRW) Increase in root length (IRL) Increase in root area (IRA) Decrease in canal area (DAC) | CLS: (success rates 1 and 2) G1: 18/18; G2: 16/17; G3: 17/17; G4: 20/21 |
CDRT: %, 27 months | |||||||
IRW: (%) G1: 19.48 ± 3.62 G2: 11.14 ± 3.89 G3: 9.99 ± 3.92 G4: 12.25 ± 4.09 (p > 0.05) | |||||||
IRL: (%) G1: 5.11 ± 1.30 G2: 7.05 ± 1.39 G3: 5.30 ± 1.41 G4: 5.06 ± 1.47 (p > 0.05) | |||||||
IRA: (%) G1: 10.25 ± 2.25 G2: 8.95 ± 2.41 G3: 8.70 ± 2.43 G4: 11.77 ± 2.54 (p > 0.05) | |||||||
DAC: (%) G1: −15.03 ± 5.25 G2: −19.11 ± 5.6 G3: −12.57 ± 5.68 G4: −26.02 ± 5.93 (p > 0.05) | |||||||
Rizk et al. (a) [26] | Patients with bilateral maxillary immature permanent central incisors with necrotic pulp. Patients: Age: 8–14 years M (n = 7) F (n = 6) Teeth (n = 26) | G1: PRPS (n = 13) G2: BC (n = 13) | Irrig: 2.0% NaCl ABX (MTZ, CPO, and MNO) TS: Coltosol F Time: 3 weeks | PRP by 4.5 mL blood 2400 rpm for 10 min and 3600 rpm 15 min 0.5 mL 10% calcium chloride + sterile collagen sponge. | MTA and II glass ionomer material (GC America, Alsip, IL) | Clinical success (CLS) Increase in root length (IRL) Increase in Root Thickness (IRT) Increase in Bone Density (IBD) Decrease in apical diameter (DAD) | CLS: G1: 100% G2: 100% |
IRL: 3 months (mm, %): G1: 0.225 ± 0.19 (1.52% ± 1.43%) G2: 0.133 ± 0.217 (0.967% ± 1.75%) (p = 0.006 *). | |||||||
6 months (mm, %): G1: 0.557 ± 0.23 (3.7% ± 1.43%) G2: 0.273±0.29 (1.92%±2.32%) (p = 0.0028 *). | |||||||
9 months (mm, %): G1: 0.996 ± 0.35 (6.6% ± 2.4%) G2: 0.449 ± 0.35 (3.11% ± 2.8%) (p = 0.001 *). | |||||||
12 months (mm, %): G1: 1.48 ± 0.37 (9.88% ± 2.85%) G2: 0.68 ± 0.44 (4.68% ± 3.45%) (p = 0.001 *). | |||||||
IRT: 3 months (mm, %): G1: 0.153 ± 0.128 (6.03% ± 5.03%) G2: 0.133 ± 0.27 (5.45% ± 9.48%) (p = 0.806). | |||||||
6 months (mm, %): G1: 0.445 ± 0.41 (18.05% ± 17.45%) G2: 0.335 ± 0.506 (12.46% ± 17.95%), (p = 0.019 *). | |||||||
9 months (mm, %): G1: 0.739 ± 0.56 (29.65% ± 23.9%) G2: 0.49 ± 0.527 (18.44% ± 19.95%) (p = 0.003 *). | |||||||
12 months (mm, %): G1: 0.97 ± 0.75 (39.27% ± 32.04%) G2: 0.68 ± 0.678 (25.56% ± 26.5%) (p = 0.002 *). | |||||||
IBD: 3 months (grey value, %): G1: 24.87 ± 16.63 (27.605% ± 19.89%) G2: 19.45 ± 12.35 (0.206% ± 1.60%) (p = 0.027). | |||||||
6 months (grey value, %): G1: 34.42 ± 21.03 (42.3% ± 25.46%), G2: 33.8 ± 17.87 (0.355% ± 0.235%), (p = 0.027 *). | |||||||
9 months (grey value, %): G1: 52.47 ± 25.39 (57.74% ± 31.36%) G2: 44.91±21.01 (0.468%±0.283%), (p = 0.027). | |||||||
12 months (grey value, %): G1: 65.08 ± 30.043 (71.84% ± 30.043%), G2: 58.96 ± 19.95 (0.609% ± 0.27%), (p = 0.027). | |||||||
DAD: 3 months (mm, %): G1: 0.25 ± 0.167 (9.91% ± 6.03%), G2: 0.137 ± 0.063 (6.06% ± 3.7%), (p = 0.008 *). | |||||||
6 months (mm, %): G1: 0.656 ± 0.43 (27.29% ± 14.1%), G2: 0.42 ± 0.27 (18.24% ± 11.11%), (p = 0.005 *). | |||||||
9 months mm (%): G1: 2.17 ± 3.86 (51.98% ± 19.64%), G2: 1.92±3.9 (40.7% ± 21.43%), (p = 0.002 *). | |||||||
12 months mm (%): G1: 2.49 ± 3.93 (64.83% ± 18.5%), G2: 2.2 ± 3.97 (53.45% ± 19.4%), (p = 0.003 *). | |||||||
ElSheshtawy et al. [27] | Patients with immature permanent anterior teeth with necrotic pulps | G1: PRP G2: BC | Irrig: 5.25% NaCl Metronidazole, ciprofloxacin, and minocycline. TS: Coltosol F | PRP: blood 2400 rpm for 10 min and 3600 rpm for 15 min | MTA, glass ionomer (RIVA self-cure, SDI limited, Bayswater, Victoria, Australia) and resin composite (Filtek z250 universal restorative, 3 mol L1 ESPE, St. Paul, MN, USA). | Clinical Success (CLS) Pulp sensibility (thermal electrical) Root length (RL) Dentinal wall thickness (RDT) Apical foramen width (AFW) Radiographic root area (RRA) Periapical area diameters (PAD) | CLS: 6 months: G1: 12/14 (85.7%); G2: 15/17 (88%) |
Pulp sensibility: 12 months: G1: 100% lack of response G2: 100% lack of response | |||||||
Time changes (time effect) in RL, RDT, AFW, RRA, and PAD were found to be significant (P < 0.001). No difference between the REP. No more data. | |||||||
Rizk et al. (b) [28] | Pediatric Patients with permanent maxillary central incisors immature and necrosis. Patients Age: 8–14 year M (n = 7) F (n = 6) Teeth (n = 26) | G1: PRPS (n = 13) G2: PRFS (n = 13) | Irrig: 2.0% NaCl ABX (MTZ, CPO and MNO) TS: Coltosol F Time: 3 weeks | PRPS: blood 2400 rpm for 10 min and 3600 rpm for 15 min + 2 × 2 mL of sterile collagen sponge. PRFS: blood at 3000 rpm for 10 min + 2 × 2 mL of sterile collagen sponge. | Glass ionomer (GC America, 213 Alsip, IL) and composite (Z 250, 3 M ESPE). | Increase in root length (IRL) Increase in root width (WF) Increase in bone density in grey (IBD) Decrease in apical diameter (DAD) | CLS: G1: 13/13 G2: 13/13 |
IRL: | |||||||
3 months (mm, %): G1: 0.225 ± 0.19 (1.52% ± 1.43%) G2: 0.155 ± 0.099 (1.02% ± 0.673%) (p = 0.406) | |||||||
6 months (mm, %): G1: 0.557 ± 0.23 (3.7% ± 1.43%) G2: 0.391 ± 0.187 (2.57% ± 1.23%) (p = 0.127) | |||||||
9 months (mm, %): G1: 0.996 ± 0.35 (6.6% ± 2.4%) G2: 0.793 ± 0.378 (5.2% ± 2.48%) (p = 0.174) | |||||||
12 months (mm, %): G1: 1.48 ± 0.37 (9.88% ± 2.85%) G2: 1.24 ± 0.54 (8.19% ± 3.64%) (p = 0.355) | |||||||
WF: | |||||||
3 months (mm, %): G1: 0.153 ± 0.128 (6.03% ± 5.03%) G2: 0.19494 ± 0.172 (7.9% ± 6.2%) (p = 0.47) | |||||||
6 months (mm, %): G1: 0.445 ± 0.41 (18.05% ± 17.45%) G2: 0.474 ± 0.299 (19.97% ± 12.08%) (p = 0.503) | |||||||
9 months (mm, %): G1: 0.739 ± 0.56 (29.65% ± 23.9%) G2: 0.73517 ± 0.34 (30.77% ± 13.26%) (p = 0.503) | |||||||
12 months (mm, %): G1: 0.97 ± 0.75 (39.27% ± 32.04%) G2: 1.003 ± 0.392 (42.37% ± 16.49%) (p = 0.574) | |||||||
IBD: | |||||||
3 months (grey value, %): G1: 24.87 ± 16.63 (27.605% ± 19.89%) G2:15.64 ± 11.1 (45.14% ± 74.78%) (p = 0.345) | |||||||
6 months (grey value, %): G1: 34.42 ± 21.03 (42.3% ± 25.46%) G2: 28.2 ± 16.7 (80.6% ± 145.1%) (p = 0.345) | |||||||
9 months (grey value, %) G1: 52.47 ± 25.39 (57.74% ± 31.36%) G2: 40.79 ± 19.12 (109.29% ± 171.22%) (p = 0.414) | |||||||
12 months (grey value, %): G1: 65.08 ± 30.043 (71.84% ± 30.043%) G2: 53.44 ± 22.165 (137.4% ± 203.02%) (p = 0.345) | |||||||
DAD: | |||||||
3 months (mm, %): G1: 0.25 ± 0.167 (9.91% ± 6.03%) G2: 0.34 ± 0.2 (15.7% ± 8.84%) (p = 0.246) | |||||||
6 months (mm, %): G1: 0.656 ± 0.43 (27.29% ± 14.1%) G2: 0.87 ± 0.48 (38.23% ± 15.03%) (p = 0.123) | |||||||
9 months (mm, %): G1: 2.17 ± 3.86 (51.98% ± 19.64%) G2: 1.33 ± 0.57 (58.89% ± 10.59%) (p = 0.611) | |||||||
12 months (mm, %): G1: 2.49 ± 3.93 (64.83% ± 18.5%) G2: 1.73 ± 0.665 (76.75% ± 8.5%) (p = 0.437) |
Certainty Assessment | No of Patients | Effect | Certainty | Importance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No of Studies/Outcome | Study Design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other Considerations | Experimental REP | BC | Relative (95% CI) | Absolute (95% CI) | ||
Clinical success | ||||||||||||
8 | randomized trials | serious | serious | not serious | not serious | none | 116/125 (92.8%) | 114/127 (89.8%) | RR 1.00 (0.94 to 1.06) | 0 fewer per 1000 (from 54 fewer to 54 more) | ⨁⨁◯◯LOW | CRITICAL |
IRL % at 12 months | ||||||||||||
5 | randomized trials | serious | serious | not serious | not serious | none | 79 | 82 | - | MD 2.62 higher (0.24 lower to 5.48 higher) | ⨁⨁◯◯LOW | IMPORTANT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Gutiérrez, M.E.M.; Argueta-Figueroa, L.; Fuentes-Mascorro, G.; Moreno-Rodríguez, A.; Torres-Rosas, R. Novel Approaches for the Treatment of Necrotic Immature Teeth Using Regenerative Endodontic Procedures: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 5199. https://doi.org/10.3390/app11115199
Castro-Gutiérrez MEM, Argueta-Figueroa L, Fuentes-Mascorro G, Moreno-Rodríguez A, Torres-Rosas R. Novel Approaches for the Treatment of Necrotic Immature Teeth Using Regenerative Endodontic Procedures: A Systematic Review and Meta-Analysis. Applied Sciences. 2021; 11(11):5199. https://doi.org/10.3390/app11115199
Chicago/Turabian StyleCastro-Gutiérrez, María Eugenia Marcela, Liliana Argueta-Figueroa, Gisela Fuentes-Mascorro, Adriana Moreno-Rodríguez, and Rafael Torres-Rosas. 2021. "Novel Approaches for the Treatment of Necrotic Immature Teeth Using Regenerative Endodontic Procedures: A Systematic Review and Meta-Analysis" Applied Sciences 11, no. 11: 5199. https://doi.org/10.3390/app11115199
APA StyleCastro-Gutiérrez, M. E. M., Argueta-Figueroa, L., Fuentes-Mascorro, G., Moreno-Rodríguez, A., & Torres-Rosas, R. (2021). Novel Approaches for the Treatment of Necrotic Immature Teeth Using Regenerative Endodontic Procedures: A Systematic Review and Meta-Analysis. Applied Sciences, 11(11), 5199. https://doi.org/10.3390/app11115199