Controlling Factors on Petrophysical and Acoustic Properties of Bioturbated Carbonates: (Upper Jurassic, Central Saudi Arabia)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Field Work
3.2. Thin-Section Petrography
3.3. X-ray Diffraction Analysis (XRD)
3.4. Scanning Electron Microscopy
3.5. Porosity and Permeability
3.6. Acoustic Velocity Measurement
3.7. Computed Tomography
4. Results
4.1. Texture and Lithofacies
- Mudstone. Massive and thickly bedded, light grey to brown, burrowed mudstone. Skeletal grains are common and in most cases are dominated by scattered sponge spicules and scattered benthic foraminifera, and bivalve and brachiopod fragments (Figure 3A).
- Wackestone. White to beige massive beds with fine texture and high level of hardness. The sediments of this facies are well distributed throughout the studied stratigraphic section. The wackestones are rich in sponge spicules and in a few cases, show jasper chert nodules. It also contains scattered fragments of bivalves, echinoderms, brachiopods, and agglutinated foraminifera (especially the species Kurnubia palastiniensis) (Figure 3B). However, in general, it is similar to the mudstone lithofacies but with a higher abundance of skeletal grains, and the sediments show a higher bioturbation intensity with abundant Thalassinoides burrows. Mudstones and wackestones are more dominant in the lower part of the formation.
- Packstone. Massive beige beds mainly comprising skeletal grains of foraminifera, bivalves and sponge spicules, quartz grains, oncoids and peloids (Figure 3C). The percentage of each skeletal and non-skeletal grain type varies considerably based on the associated lithofacies. The packstone lithofacies occur together with the sponge spiculitic skeletal wackstones, the peloidal grainstones, and the reefal lithofacies.
- Grainstone. This facies caps the sedimentary cycles in both the upper and lower parts of the studied succession. However, their abundance is more frequent within the upper cycles. The grainstone beds are massive, horizontally laminated and show trough cross-bedding; and at times, the beds have an erosive base. The sediments are brownish in color and mainly composed of peloids, combined with angular fine quartz grains and scattered skeletal grains, mainly bivalves (Figure 3D).
- Reefal lithofacies. The main reef builders found in the Oxfordian Hanifa succession are scleractinian corals in addition to demosponges, especially, stromatoporoids (Figure 3E). These reef builders are found either in association forming a mixed coral/stromatoporoid framestone, rudstone (Figure 3F), or do occur independently, forming their own buildups. Both coral and stromatoporoid fragments are found scattered in a floatstone texture, with a skeletal wackestone/packstone matrix. The reefal limestone sometimes shows interbedding with the peloidal grainstone lithofacies.
4.2. Mineralogy
4.3. Pore Types
4.4. Bioturbation
4.5. Porosity and Permeability
4.6. Factors Controlling Acoustic Velocity
4.6.1. Porosity, Permeability, Texture, and Mineralogy
4.6.2. Pore Types
4.6.3. Bioturbation Intensity and Burrow Infill
5. Discussion
5.1. Bioturbation and Burrow Fill Impact on Porosity and Permeability
5.2. Controlling Factors on Acoustic Velocity
5.2.1. Mineralogy and Compressional Velocity
5.2.2. Bioturbation Impact on Acoustic Velocity
5.2.3. Permeability, Bioturbation, and Compressional Velocity
6. Conclusions
- The Upper Jurassic Hanifa Formation is composed of slightly to intensely bioturbated strata that were deposited within an intra-shelf basin on a shallow-marine carbonate platform.
- Porosity and permeability are controlled by bioturbation and burrow filling material, where mud-dominated strata with coarse-filled burrows have higher porosity and permeability values relative to the grain-dominated strata with fine-filled burrows.
- Acoustic velocity of Hanifa Formation sediments is controlled by the interplay between porosity, permeability, mineralogy, bioturbation, and burrow filling material and texture.
- Porosity and permeability are inversely related with acoustic velocity, where samples with higher porosity and permeability values have lower acoustic velocities than samples with low porosity and permeability.
- Mineralogy has a main control on acoustic velocity, with quartz-rich samples showing lower velocities than quartz-poor samples.
- Burrow filling material and texture seem to have a significant control on petrophysical properties (porosity and permeability) and acoustic velocity. Coarse-filled burrows have higher porosity and permeabilities, and lower velocities compared to the fine-filled burrows.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ID | Porosity (%) | Permeability (mD) | Density (gm/cc) | Texture | BI (%) | Burrow Fill | Mineralogy (%) | Compressional Velocity | Shear Velocity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calcite | Dolomite | Quartz | Vp 5 | Vp 10 | Vp 20 | Vp 40 | Vs 5 | Vs 10 | Vs 20 | Vs 40 | |||||||
H2-2.2 | 5.33 | 0.0035 | 2.56 | W | 15.30 | F | 96.1 | 0.1 | 3.7 | 5.89 | 5.93 | 6.07 | 6.07 | 2.96 | 3.16 | 3.21 | 3.23 |
H2-4.6 | 15.29 | 1.91 | 2.28 | W | 8.44 | C | 99.8 | 0.1 | 0.1 | 5.22 | 5.26 | 5.29 | 5.32 | 2.61 | 2.60 | 2.70 | 2.71 |
H2-9.5 | 13.83 | 0.3362 | 2.34 | M | 11.56 | C | 98.6 | 0.1 | 1.3 | 4.96 | 5.07 | 5.02 | 5.02 | 2.47 | 2.52 | 2.58 | 2.71 |
H2-10.4 | 3.51 | 0.0019 | 2.60 | P | 8.01 | F | 80.7 | 0.2 | 19.1 | 5.84 | 5.91 | 6.02 | 6.05 | 3.24 | 3.26 | 3.26 | 3.26 |
H2-17 | 9.27 | 0.0098 | 2.41 | W | 6.54 | F | 98.5 | 0.1 | 1.1 | 4.08 | 4.10 | 4.15 | 4.28 | 2.29 | 2.32 | 2.36 | 2.40 |
H2-18 | 6.27 | 0.0064 | 2.51 | M | 9.73 | F | 98.7 | 0 | 1.3 | 5.24 | 5.31 | 5.35 | 5.42 | 2.81 | 2.88 | 2.93 | 2.94 |
H2-29 | 14.28 | 0.12 | 2.25 | M | 12.88 | C | 87.6 | 0 | 12.4 | 2.85 | 2.94 | 3.03 | 3.19 | 1.72 | 1.75 | 1.79 | 1.84 |
H2-36 | 5.39 | 0.0031 | 2.57 | P | 7.19 | F | 96.6 | 3.4 | 5.42 | 5.44 | 5.44 | 5.52 | 2.92 | 2.95 | 2.96 | 2.98 | |
H2-37 | 11.91 | 0.1456 | 2.39 | P | 16.87 | C | 95.8 | 0 | 4.1 | 4.80 | 4.80 | 4.83 | 4.88 | 2.58 | 2.62 | 2.64 | 2.67 |
H2-40 | 12.23 | 0.0281 | 2.37 | G | 12.50 | C | 95.6 | 0 | 4.1 | 4.51 | 4.59 | 4.59 | 4.70 | 2.46 | 2.50 | 2.54 | 2.55 |
H2-41.8 | 9.13 | 0.0724 | 2.46 | G | 14.85 | F | 96.4 | 0.1 | 3.5 | 5.56 | 5.56 | 5.53 | 5.47 | 2.95 | 2.98 | 3.00 | 3.00 |
H2-44.4 | 17.95 | 0.6715 | 2.18 | W | 17.22 | C | 89.8 | 0 | 10.2 | 3.50 | 3.52 | 3.57 | 3.65 | 2.05 | 2.08 | 2.10 | 2.13 |
H2-47.9 | 5.27 | 0.0057 | 2.54 | G | 15.58 | F | 98 | 0 | 2 | 5.01 | 5.04 | 5.09 | 5.20 | 2.71 | 2.74 | 2.79 | 2.83 |
H2-49 | 14.77 | 0.5988 | 2.28 | W | 10.24 | F | 87.3 | 0 | 12.7 | 4.04 | 4.07 | 4.11 | 4.20 | 2.30 | 2.34 | 2.36 | 2.37 |
H2-54.4 | 12.64 | 0.1475 | 2.33 | P | 6.31 | F | 86.5 | 0 | 13.5 | 4.23 | 4.24 | 4.31 | 4.27 | 2.46 | 2.50 | 2.51 | 2.52 |
H2-58.7 | 5.05 | 0.0035 | 2.56 | G | 6.98 | F | 96.6 | 0.1 | 3.2 | 5.85 | 5.93 | 5.98 | 5.98 | 3.04 | 3.08 | 3.12 | 3.15 |
H2-62 | 17.28 | 0.5302 | 2.25 | W | 7.42 | C | 98.8 | 0.1 | 1 | 4.48 | 4.48 | 4.58 | 4.58 | 2.51 | 2.56 | 2.58 | 2.60 |
H2-64 | 14.86 | 0.4857 | 2.34 | W | 12.44 | C | 99.3 | 0.2 | 0.5 | 4.78 | 4.78 | 4.81 | 4.83 | 2.59 | 2.63 | 2.66 | 2.68 |
H2-64.6 | 5.77 | 0.0041 | 2.54 | R | 3.63 | F | 97.5 | 0.1 | 2.3 | 5.04 | 5.17 | 5.27 | 5.42 | 2.77 | 2.84 | 2.89 | 2.92 |
H2-68 | 12.35 | 0.0884 | 2.38 | P | 8.10 | C | 81.4 | 0 | 18.6 | 4.25 | 4.25 | 4.29 | 4.36 | 2.70 | 2.73 | 2.81 | 2.85 |
H2_94.1 | 16 | 0.5988 | 2.29 | W | 9.29 | C | 97.7 | 0.1 | 2.1 | 4.33 | 4.39 | 4.42 | 4.56 | 2.53 | 2.54 | 2.55 | 2.61 |
H2-95.6 | 16.33 | 1.0905 | 2.67 | P | 10.94 | C | 98.7 | 0 | 1.1 | 4.34 | 4.38 | 4.44 | 4.50 | 2.43 | 2.46 | 2.48 | 2.50 |
H2-97 | 13.73 | 0.5532 | 2.33 | M | 13.98 | C | 98.1 | 0 | 1.9 | 4.34 | 4.36 | 4.41 | 4.44 | 2.64 | 2.65 | 2.68 | 2.66 |
H2-99.6 | 19.72 | 1.3002 | 2.18 | W | 27.03 | C | 97.8 | 0 | 2 | 3.99 | 3.95 | 4.04 | 4.03 | 2.18 | 2.21 | 2.24 | 2.32 |
H2-102.8 | 0.77 | 0.0036 | 2.68 | F | 10.00 | F | 89.2 | 0.3 | 10.5 | 6.54 | 6.60 | 6.54 | 6.61 | 3.19 | 3.27 | 3.31 | 3.34 |
H2-103-Head | 2.14 | 0.0035 | 2.62 | F | 14.03 | F | 98.2 | 0.1 | 1.7 | 6.24 | 6.35 | 6.44 | 6.51 | 3.23 | 3.33 | 3.36 | 3.39 |
H2-109.4 | 6.34 | 0.0108 | 2.69 | G | 7.94 | C | 75.1 | 0.1 | 24.7 | 5.21 | 5.24 | 5.27 | 5.24 | 2.83 | 2.91 | 2.94 | 2.95 |
References and Note
- Cannon, S.J.C.; Gowland, S. Facies controls on reservoir quality in the Late Jurassic Fulmar Formation, Quadrant 21, UKCS. Geol. Soc. Lond. Spec. Publ. 1996, 114, 215–233. [Google Scholar] [CrossRef]
- Richards, P.C. An introduction to the Brent Group: A literature review. Geol. Soc. Lond. Spec. Publ. 1992, 61, 15–26. [Google Scholar] [CrossRef]
- McIlroy, D. Ichnofabrics and sedimentary facies of a tide-dominated delta: Jurassic Ile Formation of Kristin Field, Haltenbanken, Offshore Mid-Norway. Geol. Soc. Lond. Spec. Publ. 2004, 228, 237–272. [Google Scholar] [CrossRef]
- Eltom, H.A.; González, L.A.; Alqubalee, A.; Amao, A.O.; Salih, M. Evidence for the development of a superpermeability flow zone by bioturbation in shallow marine strata, upper Jubaila Formation, central Saudi Arabia. Mar. Pet. Geol. 2020, 120, 104512. [Google Scholar] [CrossRef]
- Eltom, H.A.; Rankey, E.C.; Hasiotis, S.T.; Barati, R. Effect of bioturbation on petrophysical properties: Insights from geostatistical and flow simulation modeling. Mar. Pet. Geol. 2019, 104, 259–269. [Google Scholar] [CrossRef]
- Pemberton, S.G.; Gingras, M.K. Classification and characterizations of biogenically enhanced permeability. Aapg Bull. 2005, 89, 1493–1517. [Google Scholar] [CrossRef]
- Paz, M.; Ponce, J.J.; Buatois, L.A.; Mángano, M.G.; Carmona, N.B.; Pereira, E.; Desjardins, P.R. Bottomset and foreset sedimentary processes in the mixed carbonate-siliciclastic Upper Jurassic-Lower Cretaceous Vaca Muerta Formation, Picún Leufú Area, Argentina. Sediment. Geol. 2019, 389, 161–185. [Google Scholar] [CrossRef]
- Shull, D.H. Encyclopedia of Ocean. Sciences, 2nd ed.; Steele, J.H., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 395–400. [Google Scholar]
- Taylor, A.; Goldring, R.; Gowland, S. Analysis and application of ichnofabrics. Earth Sci. Rev. 2003, 60, 227–259. [Google Scholar] [CrossRef]
- Gingras, M.K.; Bann, K.L.; MacEachern, J.A.; Waldron, J.; Pemberton, S.G. A Conceptual Framework for the Application of Trace Fossils. Appl. Ichnol. 2009, 52, 1–26. [Google Scholar]
- Bednarz, M.; McIlroy, D. Organism–sediment interactions in shale-hydrocarbon reservoir facies—Three-dimensional reconstruction of complex ichnofabric geometries and pore-networks. Int. J. Coal Geol. 2015, 150–151, 238–251. [Google Scholar] [CrossRef]
- Ben-Awuah, J.; Eswaran, P. Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta, offshore Sarawak, Malaysia. Pet. Explor. Dev. 2015, 42, 223–231. [Google Scholar] [CrossRef]
- Dey, J.; Sen, S. Impact of bioturbation on reservoir quality and production—A review. J. Geol. Soc. India 2017, 89, 460–470. [Google Scholar] [CrossRef]
- Golab, J.A.; Smith, J.J.; Clark, A.K.; Morris, R.R. Bioturbation-influenced fluid pathways within a carbonate platform system: The Lower Cretaceous (Aptian–Albian) Glen Rose Limestone. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 465, 138–155. [Google Scholar] [CrossRef] [Green Version]
- Quaye, J.A.; Jiang, Z.; Zhou, X. Bioturbation influence on reservoir rock quality: A case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag, Subei basin, China. J. Pet. Sci. Eng. 2019, 172, 1165–1173. [Google Scholar] [CrossRef]
- Dawson, W.C. Improvement of sandstone porosity during bioturbation. AAPG Bull. 1978, 62. [Google Scholar]
- Friesen, O.J.; Dashtgard, S.E.; Miller, J.; Schmitt, L.; Baldwin, C. Permeability heterogeneity in bioturbated sediments and implications for waterflooding of tight-oil reservoirs, Cardium Formation, Pembina Field, Alberta, Canada. Mar. Pet. Geol. 2017, 82, 371–387. [Google Scholar] [CrossRef]
- Gingras, M.K.; Mendoza, C.A.; Pemberton, S.G. Fossilized worm burrows influence the resource quality of porous media. Aapg Bull. 2004, 88, 875–883. [Google Scholar] [CrossRef]
- Gordon, J.B.; Pemberton, S.G.; Gingras, M.K.; Konhauser, K.O. Biogenically enhanced permeability: A petrographic analysis of Macaronichnus segregatus in the Lower Cretaceous Bluesky Formation, Alberta, Canada. Aapg Bull. 2010, 94, 1779–1795. [Google Scholar] [CrossRef]
- Bentley, S.J.; Nittrouer, C.A. Emplacement, modification, and preservation of event strata on a flood-dominated continental shelf: Eel shelf, Northern California. Cont. Shelf Res. 2003, 23, 1465–1493. [Google Scholar] [CrossRef]
- Worden, R.; Burley, S. Sandstone diagenesis: The evolution of sand to stone. Sandstone Diagenesis Recent Anc. 2003, 4, 3–44. [Google Scholar]
- Anselmetti, F.S.; Eberli, G.P. Controls on sonic velocity in carbonates. Pure Appl. Geophys. 1993, 141, 287–323. [Google Scholar] [CrossRef]
- Brigaud, B.; Vincent, B.; Durlet, C.; Deconinck, J.F.; Blanc, P.; Trouiller, A. Acoustic properties of ancient shallow-marine carbonates: Effects of depositional environments and diagenetic processes (Middle Jurassic, Paris Basin, France). J. Sediment. Res. 2010, 80, 791–807. [Google Scholar] [CrossRef]
- El-Husseiny, A.; Vega, S.; Nizamuddin, S. The effect of pore structure complexity and saturation history on the variations of acoustic velocity as function of brine and oil saturation in carbonates. J. Pet. Sci. Eng. 2019, 179, 180–191. [Google Scholar] [CrossRef]
- Husseiny, A.E.; Vanorio, T. Synthesis of Micritic Carbonate Analogs: Effect on Velocity-Pressure Sensitivity and Dissolution. In SEG Technical Program Expanded Abstracts, 2797–2801 (Society of Exploration Geophysicists, 2013). Available online: https://www.researchgate.net/publication/269042962_Synthesis_of_micritic_carbonate_analogs_Effect_on_velocity-pressure_sensitivity_and_dissolution (accessed on 1 May 2021).
- Jafarian, E.; Kleipool, L.; Scheibner, C.; Blomeier, D.; Reijmer, J. Variations in petrophysical properties of Upper Palaeozoic mixed carbonate and non-carbonate deposits, Spitsbergen, Svalbard Archipelago. J. Pet. Geol. 2017, 40, 59–83. [Google Scholar] [CrossRef] [Green Version]
- Kleipool, L.; Reijmer, J.; Badenas, B.; Aurell, M. Variations in petrophysical properties along a mixed siliciclastic carbonate ramp (Upper Jurassic, Ricla, NE Spain). Mar. Pet. Geol. 2015, 68, 158–177. [Google Scholar] [CrossRef]
- Rafavich, F.; Kendall, C.S.C.; Todd, T. The relationship between acoustic properties and the petrographic character of carbonate rocks. Geophysics 1984, 49, 1622–1636. [Google Scholar] [CrossRef]
- Salih, M.; Reijmer, J.J.G.; El-Husseiny, A. Diagenetic controls on the elastic velocity of the early Triassic Upper Khartam Member (Khuff Formation, central Saudi Arabia). Mar. Pet. Geol. 2020, 124, 104823. [Google Scholar] [CrossRef]
- Soete, J.; Kleipool, L.M.; Claes, H.; Claes, H.; Hamaekers, H.; Kele, S.; Swennen, R. Acoustic properties in travertines and their relation to porosity and pore types. Mar. Pet. Geol. 2015, 59, 320–335. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hirsche, W.K.; Sedgwick, G. Seismic velocities in carbonate rocks. J. Can. Pet. Technol. 1991, 30. [Google Scholar]
- Gingras, M.K.; Baniak, G.; Gordon, J.; Hovikoski, J.; Konhauser, K.O.; La Croix, A.; Zonneveld, J.P. Porosity and permeability in bioturbated sediments. Dev. Sedimentol. 2012, 64, 837–868. [Google Scholar]
- Eltom, H.; Hasiotis, S.T.; Rankey, E.C. Effect of bioturbation on the porosity and permeability of shelf carbonates: Examples from the Ulayyah Member of the Hanifa Formation, Central Saudi Arabia. In Proceedings of the AAPG ACE, Salt Lake City, UT, USA, 20–23 May 2018. [Google Scholar]
- El-hedeny, M. Shallow-marine trace fossils from the Callovian-Oxfordian Tuwaiq Mountain Limestone and Hanifa Formations, central Saudi. Aust. J. Basic Appl. Sci. 2012, 6, 722–733. [Google Scholar]
- Al-Husseini, M.I. (Ed.) The Khuff Formation—Its reservoir potential in Saudi Arabia and other Gulf countries. In Proceedings of the Geo-94, Middle East Petroleum Geosciences Conference, Manama, Bahrain, 25–27 April 1994; pp. 103–119. [Google Scholar]
- Ziegler, M. Late Permian to Holocene palaeofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia 2001, 6, 445–504. [Google Scholar]
- Konert, G.; Afifi, A.M.; Al-Hajri, S.I.A.; Droste, H.J. Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate. GeoArabia 2001, 6, 407–442. [Google Scholar]
- Le Nindre, Y.-M.; Vaslet, D.; Le Métour, J.; Bertrand, J.; Halawani, M. Subsidence modelling of the Arabian Platform from Permian to Paleogene outcrops. Sediment. Geol. 2003, 156, 263–285. [Google Scholar] [CrossRef]
- Murris, R. Middle East: Stratigraphic evolution and oil habitat. Aapg Bull. 1980, 64, 597–618. [Google Scholar]
- Al-Husseini, M.I. Jurassic sequence stratigraphy of the western and southern Arabian Gulf. GeoArabia 1997, 2, 361–382. [Google Scholar]
- Handford, C.R. Review of Carbonate Sand-Belt Deposition of Ooid Grainstones and Application to Mississippian Reservoir, Damme Field, Southwestern Kansas1. Aapg Bull. 1988, 72, 1184–1199. [Google Scholar] [CrossRef]
- Enay, R.; Le Nindre, Y.-M.; Mangold, C.; Manivit, J.; Vaslet, D. Le Jurassique d’arabie saoudite centrale: Nouvellesdonnées sur la lithostratigraphie, les paléoenvironnements, les faunes d’Ammonites, les âges et les corrélations. Geobios 1987, 20, 13–65. [Google Scholar] [CrossRef]
- Hughes, G.W. A new thin-section based micropaleontological biozonation for the Saudi Arabian Jurassic carbonates. Micropaleontology 2018, 64, 331–364. [Google Scholar]
- Hughes, G.W.A.G. Middle to Upper Jurassic Saudi Arabian carbonate petroleum reservoirs: Biostratigraphy, micropalaeontology and palaeoenvironments. GeoArabia 2004, 9, 79–114. [Google Scholar]
- Manivit, J.; Pellaton, C.; Vaslet, D.; Le Nindre, Y.M.; Brosse, J.M.; Breton, J.P.; Fourniguet, J. Geologic Map of the Darma Quadrangle, Sheet 24H. Kingdom of Saudi Arabia, Saudi Arabian Deputy Ministry for Mineral Resources Geosciences Map, GM-101, Scale 1. 1985. Available online: https://catalog.princeton.edu/catalog/6522796 (accessed on 1 May 2021).
- Tintant, H. Les Nautiles du Jurassique d’Arabie Saoudite. Geobios 1987, 20, 67–159. [Google Scholar] [CrossRef]
- Vaslet, D.; Manivit, J.; Le Nindre, Y.M.; Brosse, J.M.; Fourniguet, J.; Delfour, J. Explanatory Notes to the Geologic Map of the Wadi Ar Rayn Quadrangle, Kingdom of Saudi Arabia. Geoscience Map GM-63C, Scale 1, 46. 1983.
- Alsharhan, A.; Magara, K. The Jurassic of the Arabian Gulf Basin: Facies, depositional setting and hydrocarbon habitat. Can. Soc. Pet. Geol. Mem. 1994, 17, 397–412. [Google Scholar]
- Droste, H. Depositional cycles and source rock development in an epeiric intra-platform basin: The Hanifa Formation of the Arabian peninsula. Sediment. Geol. 1990, 69, 281–296. [Google Scholar] [CrossRef]
- Al-Aswad, A.A. Middle Jurassic non-marine siliciclastic facies in southern central Saudi Arabia. J. Afr. Earth Sci. 1995, 20, 253–262. [Google Scholar] [CrossRef]
- Hughes, G.W.A.G.; Varol, O.; Al-Khalid, M. Late Oxfordian micropalaeontology, nannopalaeontology and palaeoenvironments of Saudi Arabia. GeoArabia 2008, 13, 15–46. [Google Scholar]
- Dickson, J.A.D. Carbonate identification and genesis as revealed by staining. J. Sediment. Res. 1966, 36, 491–505. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of carbonate rocks according to depositional textures. In M1: Classification of Carbonate Rocks-A Symposium; Ham, W.E., Ed.; 1962; pp. 108–121. Available online: http://eprints.uni-kiel.de/51680/ (accessed on 1 May 2021).
- Embry, A.F.; Klovan, J.E. A late Devonian reef tract on northeastern Banks Island, NWT. Bull. Can. Pet. Geol. 1971, 19, 730–781. [Google Scholar]
- Choquette, P.W.; Pray, L.C. Geologic nomenclature and classification of porosity in sedimentary carbonates. Aapg Bull. 1970, 54, 207–250. [Google Scholar]
- Yakowitz, H.; Goldstein, J. Practical aspects of X-ray microanalysis. In Practical Scanning Electron Microscopy; Springer: Berlin/Heidelberg, Germany, 1975; pp. 401–434. [Google Scholar]
- Fallatah, M.I.; Kerans, C. Stratigraphic evolution of the Late Jurassic Hanifa Formation along the Tuwaiq Escarpment, Saudi Arabia: Evidence for a carbonate ramp system. Sediment. Geol. 2018, 363, 152–180. [Google Scholar] [CrossRef]
- Cantrell, D.L.; Hagerty, R.M. Microporosity in arab formation carbonates, Saudi Arabia. GeoArabia 1999, 4, 129–154. [Google Scholar]
- Knaust, D.; Dorador, J.; Rodríguez-Tovar, F.J. Burrowed matrix powering dual porosity systems–A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea. Mar. Pet. Geol. 2020, 113, 104158. [Google Scholar] [CrossRef]
- Liu, H.; Shi, K.; Liu, B.; Song, X.; Guo, R.; Li, Y.; Shen, Y. Characterization and identification of bioturbation-associated high permeability zones in carbonate reservoirs of Upper Cretaceous Khasib Formation, AD oilfield, central Mesopotamian Basin, Iraq. Mar. Pet. Geol. 2019, 110, 747–767. [Google Scholar] [CrossRef]
- Eltom, H.A.; Alqubalee, A.; Yassin, M.A. Potential overlooked bioturbated reservoir zones in the shallow marine strata of the Hanifa Formation in central Saudi Arabia. Mar. Pet. Geol. 2021, 124, 104798. [Google Scholar] [CrossRef]
- Golab, J.A.; Smith, J.J.; Clark, A.K.; Blome, C.D. Effects of Thalassinoides ichnofabrics on the petrophysical properties of the Lower Cretaceous Lower Glen Rose Limestone, Middle Trinity Aquifer, Northern Bexar County, Texas. Sediment. Geol. 2017, 351, 1–10. [Google Scholar] [CrossRef]
- Knaust, D. Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian–Triassic Khuff Formation in the Middle East. GeoArabia 2009, 14, 17–38. [Google Scholar]
- Eberli, G.P.; Baechle, G.T.; Anselmetti, F.S.; Incze, M.L. Factors controlling elastic properties in carbonate sediments and rocks. Lead. Edge 2003, 22, 654–660. [Google Scholar] [CrossRef]
- Kenter, J.A.; Podladchikov, F.F.; Reinders, M.; Van der Gaast, S.J.; Fouke, B.W.; Sonnenfeld, M.D. Parameters controlling sonic velocities in a mixed carbonate-siliciclastics Permian shelf-margin (upper San Andres formation, Last Chance Canyon, New Mexico). Geophysics 1997, 62, 505–520. [Google Scholar] [CrossRef]
- Zeller, M.; Reid, S.B.; Eberli, G.P.; Weger, R.J.; Massaferro, J.L. Sequence architecture and heterogeneities of a field–Scale Vaca Muerta analog (Neuquén Basin, Argentina)–From outcrop to synthetic seismic. Mar. Pet. Geol. 2015, 66, 829–847. [Google Scholar] [CrossRef]
- Briggs, K.B.; Richardson, M.D.; Young, D.K. Variability in geoacoustic and related properties of surface sediments from the Venezuela Basin, Caribbean Sea. Mar. Geol. 1985, 68, 73–106. [Google Scholar] [CrossRef]
- Jones, S.E.; Jago, C.F. In situ assessment of modification of sediment properties by burrowing invertebrates. Mar. Biol. 1993, 115, 133–142. [Google Scholar] [CrossRef]
- Richardson, M. The effects of bioturbation on sediment elastic properties. Bull. Soc. Géol. Fr. 1983, 7, 505–513. [Google Scholar] [CrossRef]
- Rowden, A.A.; Jago, C.F.; Jones, S.E. Influence of benthic macrofauna on the geotechnical and geophysical properties of surficial sediment, North Sea. Cont. Shelf Res. 1998, 18, 1347–1363. [Google Scholar] [CrossRef]
- Weger, R.J.; Eberli, G.P.; Baechle, G.T.; Massaferro, J.L.; Sun, Y.-F. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. Aapg Bull. 2009, 93, 1297–1317. [Google Scholar] [CrossRef]
- Baechle, G.T.; Weger, R.; Eberli, G.P.; Massaferro, J.L. The Role of Macroporosity and Microporosity in Constraining Uncertainties and in Relating Velocity to Permeability in Carbonate Rocks in SEG Technical Program Expanded Abstracts. 1662–1665 (Society of Exploration Geophysicists, 2004). Available online: https://www.researchgate.net/publication/240611190_The_role_of_macroporosity_and_microporosity_in_constraining_uncertainties_and_in_relating_velocity_to_permeability_in_carbonate_rocks (accessed on 1 May 2021).
- Fabricius, I.L.; Baechle, G.; Eberli, G.P.; Weger, R. Estimating permeability of carbonate rocks from porosity and vp∕ vs. Geophysics 2007, 72, E185–E191. [Google Scholar] [CrossRef] [Green Version]
- Mokhtar, E.A.; Vega, S.; Abed Hassan, A.; Al Baloushi, M.N. Rock physics characterization using acoustic velocity measurements on late cretaceous carbonate rocks from the Middle East. In Proceedings of the Society of Petroleum Engineers-14th Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 11–14 November 2019; Volume 3, pp. 2101–2109. [Google Scholar]
- Rahman, M.H.; Pierson, B.J.; Yusoff, W.I.W. Quantification of microporosity and its effects on permeability and sonic velocity in Miocene carbonate reservoirs, offshore Sarawak, Malaysia. In Proceedings of the National Postgraduate Conference, Energy and Sustainability: Exploring the Innovative Minds, NPC, Perak, Malaysia, 19–20 September 2011; pp. 1–7. [Google Scholar]
- Xu, S.; Payne, M.A. Modeling elastic properties in carbonate rocks. Lead. Edge 2009, 28, 66–74. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, M.; Reijmer, J.J.G.; El Husseiny, A.; Bashri, M.; Eltom, H.; Mukainah, H.A.; Kaminski, M.A. Controlling Factors on Petrophysical and Acoustic Properties of Bioturbated Carbonates: (Upper Jurassic, Central Saudi Arabia). Appl. Sci. 2021, 11, 5019. https://doi.org/10.3390/app11115019
Salih M, Reijmer JJG, El Husseiny A, Bashri M, Eltom H, Mukainah HA, Kaminski MA. Controlling Factors on Petrophysical and Acoustic Properties of Bioturbated Carbonates: (Upper Jurassic, Central Saudi Arabia). Applied Sciences. 2021; 11(11):5019. https://doi.org/10.3390/app11115019
Chicago/Turabian StyleSalih, Moaz, John J. G. Reijmer, Ammar El Husseiny, Mazin Bashri, Hassan Eltom, Hani Al Mukainah, and Michael A. Kaminski. 2021. "Controlling Factors on Petrophysical and Acoustic Properties of Bioturbated Carbonates: (Upper Jurassic, Central Saudi Arabia)" Applied Sciences 11, no. 11: 5019. https://doi.org/10.3390/app11115019
APA StyleSalih, M., Reijmer, J. J. G., El Husseiny, A., Bashri, M., Eltom, H., Mukainah, H. A., & Kaminski, M. A. (2021). Controlling Factors on Petrophysical and Acoustic Properties of Bioturbated Carbonates: (Upper Jurassic, Central Saudi Arabia). Applied Sciences, 11(11), 5019. https://doi.org/10.3390/app11115019