Need for Standardization: Influence of Artificial Canal Size on Cyclic Fatigue Tests of Endodontic Instruments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Manufacturing of the Artificial Canals
2.3. Cyclic Fatigue Testing
2.4. Fractographic Analsis
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Material and Curvature Parameter of the Artificial Root Canals
4.2. Temperature and Amplitude
4.3. Congruency/Fitting of the Artificial Root Canals to Instruments
5. Conclusions
- matching diameter of artificial canals = instrument size plus tolerances (0.02 mm);
- angle of curvature 60°;
- radius 5 mm;
- center of curvature at 5 mm from the tip;
- dynamic testing with an amplitude of 3 mm;
- frequency of amplitude about 0.5 Hz;
- body temperature (37 °C);
- glycerin as a lubricant.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zupanc, J.; Vahdat-Pajouh, N.; Schäfer, E. New thermomechanically treated NiTi alloys—A review. Int. Endod. J. 2018, 51, 1088–1103. [Google Scholar] [CrossRef] [Green Version]
- McGuigan, M.B.; Louca, C.; Duncan, H.F. The impact of fractured endodontic instruments on treatment outcome. Br. Dent. J. 2013, 214, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Bueno, C.S.P.; Oliveira, D.P.; Pelegrine, R.A.; Fontana, C.E.; Rocha, D.G.P.; Gutmann, J.L.; Bueno, C.E.S. Fracture incidence of WaveOne Gold files: A prospective clinical study. Int. Endod. J. 2020, 53, 1192–1198. [Google Scholar] [CrossRef]
- Caballero-Flores, H.; Nabeshima, C.K.; Binotto, E.; Machado, M.E.L. Fracture incidence of instruments from a single-file reciprocating system by students in an endodontic graduate program: A cross-sectional retrospective study. Int. Endod. J. 2019, 52, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Coelho, M.S.; Rios, M.A.; Bueno, C.E.D.S. Separation of Nickel-Titanium Rotary and Reciprocating Instruments: A Mini-Review of Clinical Studies. Open Dent. J. 2018, 12, 864–872. [Google Scholar] [CrossRef]
- Yared, G.M.; Dagher, F.E.; Machtou, P.; Kulkarni, G.K. Influence of rotational speed, torque and operator proficiency on failure of Greater Taper files. Int. Endod. J. 2002, 35, 7–12. [Google Scholar] [CrossRef]
- Zelada, G.; Varela, P.; Martín, B.; Bahillo, J.G.; Magán, F.; Ahn, S. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J. Endod. 2002, 28, 540–542. [Google Scholar] [CrossRef]
- Martín, B.; Zelada, G.; Varela, P.; Bahillo, J.G.; Magán, F.; Ahn, S.; Rodríguez, C. Factors influencing the fracture of nickel-titanium rotary instruments. Int. Endod. J. 2003, 36, 262–266. [Google Scholar] [CrossRef]
- Ferreira, F.; Adeodato, C.; Barbosa, I.; Aboud, L.; Scelza, P.; Zaccaro Scelza, M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: A systematic review. Int. Endod. J. 2017, 50, 143–152. [Google Scholar] [CrossRef]
- Roland, D.D.; Andelin, W.E.; Browning, D.F.; Hsu, G.-H.R.; Torabinejad, M. The effect of preflaring on the rates of separation for 0.04 taper nickel titanium rotary instruments. J. Endod. 2002, 28, 543–545. [Google Scholar] [CrossRef]
- Patiño, P.V.; Biedma, B.M.; Liébana, C.R.; Cantatore, G.; Bahillo, J.G. The influence of manual glide path on the separation rate of NiTi rotary instruments. J. Endod. 2005, 31, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Parashos, P.; Gordon, I.; Messer, H.H. Factors influencing defects of rotary nickel-titanium instruments after clinical use. J. Endod. 2004, 30, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Hilfer, P.B.; Bergeron, B.E.; Mayerchak, M.J.; Roberts, H.W.; Jeansonne, B.G. Multiple autoclave cycle effects on cyclic fatigue of nickel-titanium rotary files produced by new manufacturing methods. J. Endod. 2011, 37, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Galli, M.; Di Nardo, D.; Seracchiani, M.; Donfrancesco, O.; Testarelli, L. Differences in cyclic fatigue lifespan between two different heat treated NiTi endodontic rotary instruments: WaveOne Gold vs EdgeOne Fire. J. Clin. Exp. Dent. 2019, 11, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Haïkel, Y.; Serfaty, R.; Bateman, G.; Senger, B.; Allemann, C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J. Endod. 1999, 25, 434–440. [Google Scholar] [CrossRef]
- Grande, N.M.; Plotino, G.; Pecci, R.; Bedini, R.; Malagnino, V.A.; Somma, F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int. Endod. J. 2006, 39, 755–763. [Google Scholar] [CrossRef]
- Gomes, M.S.; Vieira, R.M.; Böttcher, D.E.; Plotino, G.; Celeste, R.K.; Rossi-Fedele, G. Clinical fracture incidence of rotary and reciprocating NiTi files: A systematic review and meta-regression. Aust. Endod. J. 2021, in press. [Google Scholar] [CrossRef]
- Madarati, A.A. Factors influencing incidents of complications while using nickel-titanium rotary instruments for root canal treatment. BMC Oral Health 2019, 19, 241. [Google Scholar] [CrossRef]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in rotary nickel-titanium files after clinical use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J. Endod. 2009, 35, 1469–1476. [Google Scholar] [CrossRef]
- Setzer, F.C.; Böhme, C.P. Influence of combined cyclic fatigue and torsional stress on the fracture point of nickel-titanium rotary instruments. J. Endod. 2013, 39, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Topcuoglu, H.S.; Topcuoglu, G.; Kafdag, Ö.; Arslan, H. Cyclic fatigue resistance of new reciprocating glide path files in 45- and 60-degree curved canals. Int. Endod. J. 2018, 51, 1053–1058. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Standard ISO 3630-1:2019(E): Dentistry—Endodontic Instruments—Part 1: General Requirements, 3rd ed.; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Hülsmann, M.; Donnermeyer, D.; Schäfer, E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özyürek, T.; Gündoğar, M.; Uslu, G.; Yılmaz, K.; Staffoli, S.; Nm, G.; Plotino, G.; Polimeni, A. Cyclic fatigue resistances of Hyflex EDM, WaveOne gold, Reciproc blue and 2shape NiTi rotary files in different artificial canals. Odontology 2018, 106, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Dederich, D.N.; Zakariasen, K.L. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg. Oral Med. Oral Pathol. 1986, 61, 192–196. [Google Scholar] [CrossRef]
- Gündoğar, M.; Özyürek, T.; Yılmaz, K.; Uslu, G. Cyclic fatigue resistance of HyFlex EDM, Reciproc Blue, WaveOne Gold, and Twisted File Adaptive rotary files under different temperatures and ambient conditions. J. Dent. Res. Dent. Clin. Dent. Prospects 2019, 13, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Jamleh, A.; Yahata, Y.; Ebihara, A.; Atmeh, A.R.; Bakhsh, T.; Suda, H. Performance of NiTi endodontic instrument under different temperatures. Odontology 2016, 104, 324–328. [Google Scholar] [CrossRef]
- Dosanjh, A.; Paurazas, S.; Askar, M. The effect of temperature on cyclic fatigue of nickel-titanium rotary endodontic instruments. J. Endod. 2017, 43, 823–826. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos, R.A.; Murphy, S.; Carvalho, C.A.; Govindjee, R.G.; Govindjee, S.; Peters, O.A. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J. Endod. 2016, 42, 782–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klymus, M.E.; Alcalde, M.P.; Vivan, R.R.; Só, M.V.R.; de Vasconselos, B.C.; Duarte, M.A.H. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments. Clin. Oral Investig. 2019, 23, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.; Mazza, C.; Petrovic, R.; Testarelli, L.; Gambarini, G. Influence of size and taper of artificial canals on the trajectory of NiTi instruments in cyclic fatigue studies. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Lo Savio, F.; La Rosa, G.; Bonfanti, M.; Alizzio, D.; Rapisarda, E.; Pedullà, E. Novel cyclic fatigue testing machine for endodontic files. Exp. Tech. 2020, 44, 649–665. [Google Scholar] [CrossRef]
- Zubizarreta-Macho, Á.; Albaladejo Martínez, A.; Falcão Costa, C.; Quispe-López, N.; Agustín-Panadero, R.; Mena-Álvarez, J. Influence of the type of reciprocating motion on the cyclic fatigue resistance of reciprocating files in a dynamic model. BMC Oral Health 2021, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Zubizarreta-Macho, Á.; Mena Álvarez, J.; Albaladejo Martínez, A.; Segura-Egea, J.J.; Caviedes Brucheli, J.; Agustín-Panadero, R.; López Píriz, R.; Alonso-Ezpeleta, Ó. Influence of the pecking motion frequency on the cyclic fatigue resistance of endodontic rotary files. J. Clin. Med. 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotino, G.; Grande, N.M.; Sorci, E.; Malagnino, V.A.; Somma, F. A comparison of cyclic fatigue between used and new Mtwo Ni-Ti rotary instruments. Int. Endod. J. 2006, 39, 716–723. [Google Scholar] [CrossRef]
- Anderson, T.L.; Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Cheung, G.S.; Darvell, B.W. Fatigue testing of a NiTi rotary instrument. Part 2: Fractographic analysis. Int. Endod. J. 2007, 40, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef]
- Pruett, J.P.; Clement, D.J.; Carnes, D.L., Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J. Endod. 1997, 23, 77–85. [Google Scholar] [CrossRef]
- Schäfer, E.; Diez, C.; Hoppe, W.; Tepel, J. Roentgenographic investigation of frequency and degree of canal curvatures in human permanent teeth. J. Endod. 2002, 28, 211–216. [Google Scholar] [CrossRef]
- de Hemptinne, F.; Slaus, G.; Vandendael, M.; Jacquet, W.; De Moor, R.J.; Bottenberg, P. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J. Endod. 2015, 41, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. Influence of the shape of artificial canals on the fatigue resistance of NiTi rotary instruments. Int. Endod. J. 2010, 43, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G. Fatigue resistance of new and used nickel-titanium rotating instruments: A comparative study. Clin. Ter. 2018, 169, 96–101. [Google Scholar] [CrossRef]
- Pedullà, E.; Lo Savio, F.; Boninelli, S.; Plotino, G.; Grande, N.M.; Rapisada, E.; La Rosa, G. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel–titanium instruments. Int. Endod. J. 2015, 48, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Alapati, S.B.; Brantley, W.A.; Svec, T.A.; Powers, J.M.; Nusstein, J.M.; Daehn, G.S. SEM observations of nickel-titanium rotary endodontic instruments that fractured during clinical use. J. Endod. 2005, 31, 40–43. [Google Scholar] [CrossRef] [PubMed]
Tube | Time to Fracture (s) | SD | Min | Max | Cycles to Fracture | SD | Min | Max | Fracture Length (mm) | SD | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Original 0.02 mm | 277.0 a | 25.97 | 228 | 336 | 1846.8 a | 173.14 | 1520 | 2240 | 2.91 a | 0.88 | 2.36 | 4.12 |
+0.05 mm | 302.2 b | 36.86 | 244 | 361 | 2016.8 b | 245.70 | 1626 | 2406 | 2.75 a | 0.47 | 1.74 | 3.52 |
+0.10 mm | 304.6 b | 42.29 | 230 | 381 | 2030.7 b | 281.91 | 1533 | 2540 | 2.72 a | 0.38 | 2.22 | 3.74 |
+1.2 mm | 393.5 c | 42.12 | 293 | 472 | 2622.3 c | 280.78 | 1953 | 3147 | 2.09 b | 0.32 | 1.58 | 3.11 |
p-value | <0.05 | <0.05 | <0.05 |
Percentage Increase in Diameter between Instrument Tip and Artificial Canal Sizes in Relation to Manufacturing Tolerances | ||||
---|---|---|---|---|
Instrument (Size # 25) | Matching Tube Instrument Size +0.02 # 27/100 mm | Instrument Size +0.05 mm # 35/100 mm | Instrument Size +0.10 mm # 45/100 mm | Parallel Tube 1.2 mm # 120/100 mm |
Lower tolerance # 23 | +17% | +30% | +52% | +522% |
Exact size # 25 | +8% | +20% | +40% | +480% |
Upper tolerance # 27 | +0% | +11% | +30% | +444% |
Instrument (Size # 15) | Matching Tube Instrument Size +0.02 # 17/100 mm | Instrument Size +0.05 mm # 25/100 mm | Instrument Size +0.10 mm # 35/100 mm | Parallel Tube 1.2 mm # 120/100 mm |
Lower tolerance # 13 | +31% | +92% | +269% | +923% |
Exact size # 15 | +15% | +67% | +233% | +800% |
Upper tolerance # 17 | +0% | +47% | +206% | +706% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bürklein, S.; Maßmann, P.; Donnermeyer, D.; Tegtmeyer, K.; Schäfer, E. Need for Standardization: Influence of Artificial Canal Size on Cyclic Fatigue Tests of Endodontic Instruments. Appl. Sci. 2021, 11, 4950. https://doi.org/10.3390/app11114950
Bürklein S, Maßmann P, Donnermeyer D, Tegtmeyer K, Schäfer E. Need for Standardization: Influence of Artificial Canal Size on Cyclic Fatigue Tests of Endodontic Instruments. Applied Sciences. 2021; 11(11):4950. https://doi.org/10.3390/app11114950
Chicago/Turabian StyleBürklein, Sebastian, Paul Maßmann, David Donnermeyer, Karsten Tegtmeyer, and Edgar Schäfer. 2021. "Need for Standardization: Influence of Artificial Canal Size on Cyclic Fatigue Tests of Endodontic Instruments" Applied Sciences 11, no. 11: 4950. https://doi.org/10.3390/app11114950
APA StyleBürklein, S., Maßmann, P., Donnermeyer, D., Tegtmeyer, K., & Schäfer, E. (2021). Need for Standardization: Influence of Artificial Canal Size on Cyclic Fatigue Tests of Endodontic Instruments. Applied Sciences, 11(11), 4950. https://doi.org/10.3390/app11114950