# Life Cycle Assessment of Bridges Using Bayesian Networks and Fuzzy Mathematics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

#### 2.1. Current Situation of Research Results on Environmental Impact of Construction Industry

#### 2.2. Uncertainty of Environmental Impact Factors in Construction Industry

#### 2.3. Environmental Impact Assessment Method of Construction Industry

#### 2.4. Determination of Environmental Impact Assessment Method

## 3. Methodology

#### 3.1. Research Theory (BN and Basic Principles of FMT)

#### 3.2. Theoretical Model Bridge Process

#### 3.3. LCA Research Framework and Parameters

#### 3.4. Research External Conditions

#### 3.5. Impact Factor

#### 3.5.1. Bridge a BN Hierarchical Analysis Model

#### 3.5.2. Establishing Impact Weight Matrix

#### 3.5.3. Hypothesis

**,**there is 1 first-level indicator, 5 second-level indicators, 31 third-level indicators, 68 fourth-level indicators, and 12 fifth-level indicators to derive the conclusion based on Equations (1)–(5).

## 4. Case and Results

#### 4.1. Case Description

#### 4.2. Survey and Design

#### 4.3. Material Manufacturing

#### 4.4. Construction and Installation

#### 4.5. Operation and Maintenance

_{2}concentration, which is set as $\sqrt{{\mathrm{C}}_{0}/0.03}$—CO

_{2}concentration; ${\mathrm{C}}_{{\mathrm{CO}}_{2}}$ is the CO

_{2}concentration (%); ${\mathrm{K}}_{\mathrm{k}1}$ is the location influence coefficient (1.4 or 1.0); ${\mathrm{K}}_{\mathrm{kt}}$ is the $\mathrm{C}$ casting surface influence coefficient, and is set up 1.2; ${\mathrm{K}}_{\mathrm{ks}}$ is the working stress influence coefficient, which is set as 1.0 in the compressive zone and as 1.1 in the tensile zone; $\mathrm{T}$ is the environmental temperature (℃); $\mathrm{RH}$ is the environmental relative humidity; ${\mathrm{K}}_{\mathrm{F}}$ is the substitution coefficient of fly ash; and ${\mathrm{f}}_{\mathrm{cu},\mathrm{e}}$ is the extrapolated value of C compression strength (MPa).

_{2}absorption capacity per unit volume of concrete [64].

_{2}absorption capacity of ordinary Portland cement (mol/m

^{3});$\text{}\mathrm{B}$ is the number of cementitious materials used per unit volume of $\mathrm{C}$ (kg/m

^{3}); and α is the number of mixed materials in ordinary Portland cement (%).

#### 4.6. Disassembly and Recycling

## 5. Discussion

#### 5.1. Case Environmental Impact

#### 5.1.1. BNFC Comprehensive Assessment

#### 5.1.2. Comparative Analysis of the Results of Fuzzy Comprehensive Assessment of LCA and Bayesian

#### 5.1.3. Impact Factor Calibration for SQ and EH

- >>%SQ: z=(4.213e + 05).*x^2−(5.383e + 06).*x + (1.744e + 07).
- >>%EH: z=(3.727e + 05).*x.^2-(4.998e + 06).*x + (1.708e + 07).
- >>clear all; % Curve equation fitting, The first set of calculation programming language;
- >>x = [1 2 3 4 5 6 7 8 9 10 11 12 13];
- >>y = [3175070.133 26344975.58 621212.387 14122.7683 41378.0309 17963.456 5.164350566 20075.328 1057111.776 2554272 5817825 39517468.41 2755301.595];
- >>figure;
- >>plot(x,y,‘bo’);

- >>Clear all;% The second set of calculation programming language;
- >>x = 1:13;
- >>y = 5:3175070;
- >>[x,y] = meshgrid(x,y);
- >>z = (4.213e+05).*x.^2−(5.383e + 06).*x + (1.744e+07);
- >>figure;
- >>surf(x,y,z);
- >>colormap(‘jet’);
- >>shading interp;
- >>light(‘position’,[0.2 0.2 0.8]);
- >>axis square;
- >>xlabel(‘x’);
- >>ylabel(‘y’);
- >>zlabel(‘z’);

#### 5.2. Innovation

#### 5.2.1. Modelling Analysis

**,**the third level of the environmental emissions contribution of cable-stayed bridges can be divided into eight categories and 31 types. The impact factor is considered the variable node $\mathrm{x}$, and the directed edges between nodes represent the interrelationships between nodes; $\mathrm{x}$ corresponds to the probability distribution $\mathrm{P}\left(\mathrm{x}\right)|\mathsf{\pi}\left(\mathrm{x}\right))$. The joint probability distribution for $\mathrm{n}$ nodes (${\mathrm{x}}_{1},{\text{}\mathrm{x}}_{2},\text{}\cdots \cdots ,{\text{}\mathrm{x}}_{\mathrm{n}}$) can be expressed as:

#### 5.2.2. Measures

^{3}; the amounts of waste materials and wastewater generated by EH are 488.38 tonnes and 693.70 m

^{3}. There is a need to install digital automatic control processing equipment for centralized recycling in the mixing plant [75,76,77].

#### 5.3. Transportation

#### 5.3.1. Modelling in Operation and Maintenance Phase

#### 5.3.2. Calculations in the Operation and Maintenance Phase

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Nomenclature

BN | Bayesian networks |

LCA | Life cycle assessment |

FMT | Fuzzy mathematics theory |

BNFC | Bayesian network fuzzy number comprehensive evaluation |

GWP | Global warming parameters |

AP | Acidification parameters |

FEP | Freshwater eutrophication parameters |

PMFP | Particulate matter formation parameters |

WP | Solid waste parameters |

SQ | Su Qian bridge |

EH | Gong He cable-stayed bridge |

C | Concrete |

Km | Kilometers |

kwh | Kilowatt-hour |

## References

- Yin, S.; Li, B.; Xing, Z. The governance mechanism of the building material industry (BMI) in transformation to green BMI: The perspective of green building. Sci. Total Environ.
**2019**, 677, 19–33. [Google Scholar] [CrossRef] - Det Udomsap, A.; Hallinger, P. A bibliometric review of research on sustainable construction, 1994–2018. J. Clean. Prod.
**2020**, 254. [Google Scholar] [CrossRef] - Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings
**2012**, 2, 126–152. [Google Scholar] [CrossRef] [Green Version] - Brambilla, A.; Sangiorgio, A. Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk. Renew. Sustain. Energy Rev.
**2020**, 132, 110093. [Google Scholar] [CrossRef] - Banihashemi, S.A.; Khalilzadeh, M.; Shahraki, A.; Malkhalifeh, M.R.; Ahmadizadeh, S.S.R. Optimization of environmental impacts of construction projects: A time-cost-quality trade-off approach. Int. J. Environ. Sci. Technol.
**2020**, 1–16. [Google Scholar] [CrossRef] - Bare, J.C.; Hofstetter, P.; Pennington, D.W.; Udo de Haes, H.A. Life cycle impact assessment workshop summary. Midpoints versus endpoints: The sacrifices and benefits. Int. J. Life Cycle Assess.
**2000**, 5, 319–326. [Google Scholar] [CrossRef] [Green Version] - Ciroth, A.; Eisfeldt, F. PSILCA-A Product Social Impact Life Cycle Assessment Database; Database Version 1.0; Greendelta: Berlin, Germany, 2016; Available online: https://www.openlca.org/wp-content/uploads/2016/08/PSILCA_documentation_v1.1.pdf (accessed on 12 May 2021).
- Wei, J.; Cen, K. A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitig. Adapt. Strateg. Glob. Chang.
**2019**, 24, 1343–1362. [Google Scholar] [CrossRef] - Arbault, D.; Rivière, M.; Rugani, B.; Benetto, E.; Tiruta-Barna, L. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Sci. Total Environ.
**2014**, 472, 262–272. [Google Scholar] [CrossRef] - Orcesi, A.; Cremona, C.; Ta, B. Optimization of design and life-cycle management for steel–concrete composite bridges. Struct. Eng. Int.
**2018**, 28, 185–195. [Google Scholar] [CrossRef] - Zhou, Z.; Alcalá, J.; Yepes, V. Bridge carbon emissions and driving factors based on a life-cycle assessment case study: Cable-stayed bridge over Hun He river in Liaoning, China. Int. J. Environ. Res. Public Health
**2020**, 17, 5953. [Google Scholar] [CrossRef] - Landi, D.; Marconi, M.; Bocci, E.; Germani, M. Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures. J. Clean. Prod.
**2020**, 248, 119295. [Google Scholar] [CrossRef] - Santos, R.; Costa, A.A.; Silvestre, J.D.; Vandenbergh, T.; Pyl, L. BIM-Based life cycle assessment and life cycle costing of an office building in Western Europe. Build. Environ.
**2020**, 169. [Google Scholar] [CrossRef] - Cristiano, S.; Gonella, F. To build or not to build? Megaprojects, resources, and environment: An emergy synthesis for a systemic evaluation of a major highway expansion. J. Clean. Prod.
**2019**, 223, 772–789. [Google Scholar] [CrossRef] - Giunta, M.; Bosco, D.L.; Leonardi, G.; Scopelliti, F. Estimation of gas and dust emissions in construction sites of a motorway project. Sustainability
**2019**, 11, 7218. [Google Scholar] [CrossRef] [Green Version] - Crandall, C.S. Science as dissent: The practical value of basic and applied science. J. Soc. Issues
**2019**, 75, 630–641. [Google Scholar] [CrossRef] - About Expertly curated abstract & citation database. Available online: https://www.elsevier.com/solutions/scopus (accessed on 22 April 2021).
- Thought Co. Official Listing of Countries by Region of the World. Available online: https://www.thoughtco.com/official-listing-of-countries-world-region-1435153 (accessed on 21 April 2021).
- Fritz Carrapatoso, A. Environmental aspects in free trade agreements in the Asia-Pacific region. Asia Eur. J.
**2008**, 6, 229–243. [Google Scholar] [CrossRef] - Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev.
**2018**, 81, 1906–1916. [Google Scholar] [CrossRef] [Green Version] - Chau, C.K.; Leung, T.M.; Ng, W.Y. A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Appl. Energy
**2015**, 143, 395–413. [Google Scholar] [CrossRef] - Onat, N.C.; Kucukvar, M.; Tatari, O. Scope-Based carbon footprint analysis of U.S. residential and commercial buildings: An input-output hybrid life cycle assessment approach. Build. Environ.
**2014**, 72, 53–62. [Google Scholar] [CrossRef] - Kokoni, S.; Skea, J. Input-Output and life-cycle emissions accounting: Applications in the real world. Clim. Policy
**2014**, 14, 372–396. [Google Scholar] [CrossRef] - Zhou, Z.; Alcalá, J.; Yepes, V. Environmental, economic and social impact assessment: Study of bridges in China’s five major economic regions. Int. J. Environ. Res. Public Health
**2020**, 18, 122. [Google Scholar] [CrossRef] - Chuai, X.; Huang, X.; Lu, Q.; Zhang, M.; Zhao, R.; Lu, J. Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry. Environ. Sci. Technol.
**2015**, 49, 13021–13030. [Google Scholar] [CrossRef] - Larsson Ivanov, O.; Honfi, D.; Santandrea, F.; Stripple, H. Consideration of uncertainties in LCA for infrastructure using probabilistic methods. Struct. Infrastruct. Eng.
**2019**, 711–724. [Google Scholar] [CrossRef] [Green Version] - Wiedmann, T.; Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci.
**2018**, 11, 314–321. [Google Scholar] [CrossRef] - Hosny, A.; Nik-Bakht, M.; Moselhi, O. Workspace planning in construction: Non-Deterministic factors. Autom. Constr.
**2020**, 116, 103222. [Google Scholar] [CrossRef] - Tae, S.; Baek, C.; Shin, S. Life cycle CO
_{2}evaluation on reinforced concrete structures with high-strength concrete. Environ. Impact Assess. Rev.**2011**, 31, 253–260. [Google Scholar] [CrossRef] - Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. An optimization-LCA of a prestressed concrete precast bridge. Sustainability
**2018**, 10, 685. [Google Scholar] [CrossRef] [Green Version] - Hosny, A.; Nik-Bakht, M.; Moselhi, O. Chaos and complexity in modeling and detection of spatial temporal clashes in construction processes. In Proceedings of the Construction Research Congress 2018, New Orleans, LA, USA, 2–4 April 2018; 2018; Volume 2018, pp. 639–648. [Google Scholar] [CrossRef]
- Bouhaya, L.; Le Roy, R.; Feraille-Fresnet, A. Simplified environmental study on innovative bridge structure. Environ. Sci. Technol.
**2009**, 43, 2066–2071. [Google Scholar] [CrossRef] - Habert, G.; Arribe, D.; Dehove, T.; Espinasse, L.; Roy, R.L. Reducing environmental impact by increasing the strength of concrete: Quantification of the improvement to concrete bridges. J. Clean. Prod.
**2012**, 35, 250–262. [Google Scholar] [CrossRef] - Navarro, I.J.; Penadés-Plà, V.; Martínez-Muñoz, D.; Rempling, R.; Yepes, V. Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. J. Civ. Eng. Manag.
**2020**, 26, 690–704. [Google Scholar] [CrossRef] - Penadés-Plà, V.; Martí, J.V.; García-Segura, T.; Yepes, V. Life-Cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability
**2017**, 9, 1864. [Google Scholar] [CrossRef] [Green Version] - Sánchez-Garrido, A.J.; Yepes, V. Multi-Criteria assessment of alternative sustainable structures for a self-promoted, single-family home. J. Clean. Prod.
**2020**, 258, 120556. [Google Scholar] [CrossRef] - OpenLCA 1.10. Available online: https://www.openlca.org/openlca/ (accessed on 12 May 2021).
- Holický, M.; Marková, J.; Sýkora, M. Forensic assessment of a bridge downfall using Bayesian networks. Eng. Fail. Anal.
**2013**, 30, 1–9. [Google Scholar] [CrossRef] - Carvalho, A.M. Scoring Functions for Learning Bayesian Networks. Inesc-id Tec. Rep.
**2009**, 12, 1–48. Available online: http://www.lx.it.pt/asmc/pub/talks/09-TA/ta_pres.pdf (accessed on 10 May 2021). - Li, Y.F.; Liu, Y.; Huang, T.; Huang, H.Z.; Mi, J. Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model. Qual. Reliab. Eng. Int.
**2020**, 36, 2509–2520. [Google Scholar] [CrossRef] - Khakzad, N.; Khan, F.; Amyotte, P. Risk-Based design of process systems using discrete-time Bayesian networks. Reliab. Eng. Syst. Saf.
**2013**, 109, 5–17. [Google Scholar] [CrossRef] - Mentes, A.; Helvacioglu, I.H. An application of fuzzy fault tree analysis for spread mooring systems. Ocean Eng.
**2011**, 38, 285–294. [Google Scholar] [CrossRef] - Shary, S.P. A new technique in systems analysis under interval uncertainty and ambiguity. Reliab. Comput.
**2002**, 8, 321–418. [Google Scholar] [CrossRef] - Inuiguchi, M.; Ramík, J.; Tanino, T. Oblique fuzzy vectors and their use in possibilistic linear programming. Fuzzy Sets Syst.
**2003**, 135, 123–150. [Google Scholar] [CrossRef] - Zio, E. Reliability engineering: Old problems and new challenges. Reliab. Eng. Syst. Saf.
**2009**, 94, 125–141. [Google Scholar] [CrossRef] [Green Version] - Straub, D.; Papaioannou, I. Bayesian updating with structural reliability methods. J. Eng. Mech.
**2015**, 141, 04014134. [Google Scholar] [CrossRef] [Green Version] - Luque, J.; Straub, D. Reliability analysis and updating of deteriorating systems with dynamic Bayesian networks. Struct. Saf.
**2016**, 62, 34–46. [Google Scholar] [CrossRef] - Dubois, D.; Esteva, F.; Godo, L.; Prade, H. Fuzzy-Set based logics-an history-oriented presentation of their main developments. Many Valued Nonmonotonic Turn Log.
**2007**, 8, 1–125. [Google Scholar] [CrossRef] [Green Version] - Zhu, L. Research and application of AHP-fuzzy comprehensive evaluation model. Evol. Intell.
**2020**, 1, 3. [Google Scholar] [CrossRef] - Bao, Z.; Mehran, K.; Lam, H.K.; Li, X. Membership-Dependent stability analysis of discrete-time positive polynomial fuzzymodel-based control systems with time delay. IET Control Theory Appl.
**2020**, 14, 1135–1146. [Google Scholar] [CrossRef] - Ecoinvent Database. Available online: https://www.ecoinvent.org/database/ecoinvent (accessed on 10 May 2021).
- Bedec Datebase. Available online: https://en.itec.cat/database/ (accessed on 20 May 2021).
- Hoogmartens, R.; Van Passel, S.; Van Acker, K.; Dubois, M. Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environ. Impact Assess. Rev.
**2014**, 48, 27–33. [Google Scholar] [CrossRef] - Yang, X.; Hu, M.; Wu, J.; Zhao, B. Building-Information-Modeling enabled life cycle assessment, a case study on carbon footprint accounting for a residential building in China. J. Clean. Prod.
**2018**, 183, 729–743. [Google Scholar] [CrossRef] - Rahimi, M.; Weidner, M. Decision analysis utilizing data from multiple life-cycle impact assessment methods: Part II: Model Development. J. Ind. Ecol.
**2008**, 8, 119–141. [Google Scholar] [CrossRef] - Wang, C.Q.; Li, Z.L.; Yan, Z.T.; Xiao, Z.Z. Experimental investigation on wind-resistant behavior of Chaotianmen Yangtze River Bridge. Exp. Tech.
**2012**, 36, 26–38. [Google Scholar] [CrossRef] - Zhou, Z.; Meng, S.P.; Liu, Z. Practical computing method of longitudinal anti-crack analysis for anchor end of wide hollow slab girders. Gongcheng Lixue Eng. Mech.
**2008**, 25, 177–183. [Google Scholar] - Code for Investigation of Geotechnical Engineering GB 50021-2001. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing, China. 2002. Available online: http://www.jianbiaoku.com/webarbs/book/246/54830.shtml (accessed on 20 April 2021). (In Chinese).
- Bao, H.; Yu, M.; Xu, L.; Saafi, M.; Ye, J. Experimental study and multi-physics modelling of concrete under supercritical carbonation. Constr. Build. Mater.
**2019**, 227. [Google Scholar] [CrossRef] - Sun, B.; Xiao, R.-C.; Ruan, W.-D.; Wang, P.-B. Corrosion-Induced cracking fragility of RC bridge with improved concrete carbonation and steel reinforcement corrosion models. Eng. Struct.
**2020**, 208. [Google Scholar] [CrossRef] - Vora, P.R.; Dave, U.V. Parametric studies on compressive strength of geopolymer concrete. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 51, pp. 210–219. [Google Scholar] [CrossRef] [Green Version]
- Ta, V.L.; Bonnet, S.; Senga Kiesse, T.; Ventura, A. A new meta-model to calculate carbonation front depth within concrete structures. Constr. Build. Mater.
**2016**, 129, 172–181. [Google Scholar] [CrossRef] [Green Version] - Standard for durability assessment of existing concrete structures. 2019. Available online: http://www.jianbiaoku.com/webarbs/book/138893/4047181.shtml (accessed on 20 April 2021). (In Chinese).
- Li, F.; Luo, X.; Liu, Z. Corrosion of anchorage head system of post-tensioned prestressed concrete structures under chloride environment. Struct. Concr.
**2017**, 18, 902–913. [Google Scholar] [CrossRef] - Tam, V.W.Y. Economic comparison of concrete recycling: A case study approach. Resour. Conserv. Recycl.
**2008**, 52, 821–828. [Google Scholar] [CrossRef] [Green Version] - Engelsen, C.J.; Mehus, J.; Pade, C.; Sæther, D.H. Carbon dioxide uptake in demolished and crushed concrete - CO2 Uptake During the Concrete Life Cycle, BYGGFORSK Norwegian Building Research Institute Project 03018 report 395−2005. 2005. Available online: https://www.sintef.no/globalassets/upload/byggforsk/publikasjoner/ (accessed on 14 May 2021).
- Yuan, H. Critical management measures contributing to construction waste management: Evidence from construction projects in China. Proj. Manag. J.
**2013**, 44, 101–112. [Google Scholar] [CrossRef] - Nan, C.; Jie, Z. Concrete construction waste pollution and relevant prefabricated recycling measures. Nat. Environ. Pollut. Technol. Int. Q. Sci. J.
**2020**, 19, 367–372. [Google Scholar] - Milani, C.J.; Yepes, V.; Kripka, M. Proposal of sustainability indicators for the design of small-span bridges. Int. J. Environ. Res. Public Health
**2020**, 17, 4488. [Google Scholar] [CrossRef] - IPCC, 2014: Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) IPCC: Geneva, Switzerland, 2015; p. 151. ISBN 978-92-9169-143-2. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 10 May 2021).
- Martínez-Munõz, D.; Martí, J.V.; Yepes, V. Steel-Concrete composite bridges: Design, life cycle assessment, maintenance, and decision-making. Adv. Civ. Eng.
**2020**, 8823370. [Google Scholar] [CrossRef] - Zhao, S.; Song, Q.; Duan, H.; Wen, Z.; Wang, C. Uncovering the lifecycle GHG emissions and its reduction opportunities from the urban buildings: A case study of Macau. Resour. Conserv. Recycl.
**2019**, 147, 214–226. [Google Scholar] [CrossRef] - Chung, S.S.; Wing-Hung Lo, C. Evaluating sustainability in waste management: The case of construction and demolition, chemical and clinical wastes in Hong Kong. Resour. Conserv. Recycl.
**2003**, 37, 119–145. [Google Scholar] [CrossRef] - Cai, Y.J.; Lo, C.K.Y. Omni-Channel management in the new retailing era: A systematic review and future research agenda. Int. J. Prod. Econ.
**2020**, 229. [Google Scholar] [CrossRef] - De Haas, K.; Wilsdorf, D.; Schlösser, J. Process instrumentation, control equipment, and process analysis measurement technology. In Multiproduct Plants; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; pp. 131–158. [Google Scholar] [CrossRef]
- Yepes, V.; Dasí-Gil, M.; Martínez-Muñoz, D.; López-Desfilis, V.J.; Martí, J.V. Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Appl. Sci.
**2019**, 9, 3253. [Google Scholar] [CrossRef] [Green Version] - Siddiqui, S.A.; Ahmad, A. Implementation of thin-walled approximation to evaluate properties of complex steel sections using C++. SN Comput. Sci.
**2020**, 1. [Google Scholar] [CrossRef] - State Council of China. New Energy Automobile Industry Development Plan (2012–2020). 2012. Available online: http://www.gov.cn/zhengce/ (accessed on 20 April 2021).
- Sierra, L.A.; Pellicer, E.; Yepes, V. Method for estimating the social sustainability of infrastructure projects. Environ. Impact Assess. Rev.
**2017**, 65, 41–53. [Google Scholar] [CrossRef] [Green Version] - Qiao, Q.; Zhao, F.; Liu, Z.; Hao, H. Electric vehicle recycling in China: Economic and environmental benefits. Resour. Conserv. Recycl.
**2019**, 140, 45–53. [Google Scholar] [CrossRef] - Figueiredo, K.; Pierott, R.; Hammad, A.W.A.; Haddad, A. Sustainable material choice for construction projects: A life cycle sustainability assessment framework based on BIM and Fuzzy-AHP. Build. Environ.
**2021**, 196, 107805. [Google Scholar] [CrossRef] - Huang, M.; Dong, Q.; Ni, F.; Wang, L. LCA and LCCA based multi-objective optimization of pavement maintenance. J. Clean. Prod.
**2021**, 283. [Google Scholar] [CrossRef] - Dargay, J.; Gately, D.; Sommer, M. Vehicle ownership and income growth, worldwide: 1960–2030. Energy J.
**2007**, 28, 143–170. [Google Scholar] [CrossRef] [Green Version] - Wu, T.; Zhang, M.; Ou, X. Analysis of future vehicle energy demand in China based on a gompertz function method and computable general equilibrium model. Energies
**2014**, 7, 7454–7482. [Google Scholar] [CrossRef] [Green Version] - Schwabe, J. From “obligated embeddedness” to “obligated Chineseness”? Bargaining processes and evolution of international automotive firms in China’s New Energy Vehicle sector. Growth Chang.
**2020**, 51, 1102–1123. [Google Scholar] [CrossRef]

**Figure 5.**Schematic diagram of tree-shaped BN of environmental impact contribution of cable-stayed bridge.

**Figure 7.**Comparison diagram of research and analysis conclusions of SQ’s contribution to the environment.

**Figure 8.**Comparison diagram of research and analysis conclusions of EH environmental impact contribution.

**Figure 9.**Comparison of the conclusions of using two methods to study the environmental impact contribution of SQ and EH.

**Figure 10.**The matching degree of the contribution of SQ and EH to the environmental impact is fit to the numerical curve.

**Figure 11.**The influencing factors obtained by the three evaluation methods are compared and fitted with the analysis of mean difference.

**Figure 13.**SQ and EH maintenance and operation stage environmental impact fitting and future change trend interpolation analysis.

**Figure 15.**A schematic diagram of the numerical comparison of the environmental impact contribution types of SQ and EH.

**Figure 16.**A Summary table of vehicle assessment data during operation and maintenance for SQ and EH.

**Figure 17.**Five-stage contribution of transportation vehicles and operation and maintenance vehicle assessment chart for SQ and EH.

Bridge Name | Design Institute and Project Site | Design Time | Survey and Design Time (Days) | Project Staff (Person) | Number of Drilling Holes | Drilling Depth | Drilling Working Hours | ||
---|---|---|---|---|---|---|---|---|---|

(km) | (Days) | Survey | Design | Survey | Design | (Piece) | (m) | (Hours) | |

SQ | 6 | 360 | 120 | 240 | 12 | 16 | 26 | 1456 | 11 |

EH | 389 | 821 | 173 | 648 | 14 | 20 | 34 | 2210 | 16 |

Bridge Name | Duration of the Hanging Basket (Days) | Total Construction Period (Days) | Main Tower Lifting Equipment | Working Power (kwh) | Equipment Weight (Tonnes) | Managed Personnel (Persons) | Construction Worker (Persons) |
---|---|---|---|---|---|---|---|

SQ | 255 | 729 | Tower crane | 90 | 78.54 | 24 | 260~320 |

EH | 495 | 601 | Tower crane | 82.4 | 72.15 | 28 | 280~340 |

SQ, EH Maintenance and Repair Cycle | ||
---|---|---|

Material | Damage Mechanism | Cycle |

Steel | Aging; carbonization; rust; chloride salt corrosion; freeze–thaw environment; sulfate corrosion; alkali aggregation reaction | Maintenance/1 Year |

Inspection and repair/2 Years | ||

Maintenance and repair/70 Years | ||

Expansion joint; Waterproof level; Bridge deck pavement | Wear; aging; chloride salt corrosion; freeze–thaw environment; sulfate corrosion; destruction | Maintenance/1 Year |

Inspection and repair/2 Years | ||

Replacement/10Years | ||

Main beam; Anti-collision guardrail; Bridge deck drainage; Lighting | Shock; vibration; overload; uneven settlement; chloride salt corrosion; freeze–thaw environment; sulfate corrosion; alkaline material reaction | Maintenance/1 Year |

Inspection and repair/5 Years | ||

Replacement/50Years | ||

Paint for caps; Piers and beams | Chemical attack; abrasion; erosion; aging; chloride salt attack; freeze–thaw environment; sulfate attack | Maintenance/1 Year |

Replacement/5Years | ||

Abutment | Chemical attack; wear; impact; aging | Maintenance/1 Year |

Inspection and repair/5 Years | ||

Replacement/25Years | ||

Main Galasso | Chemical corrosion; vehicle overload and insufficient maintenance | Maintenance/1 Year |

Inspection and repair/5 Years | ||

Replacement/30Years |

**Table 4.**Summary table of five-stage modelling formulas [11].

Stage | Modelling Formula | Explanation |
---|---|---|

SD | ${\mathrm{EC}}_{\mathrm{SD}}$$={\mathrm{E}}_{\mathrm{m}}$+${\text{}\mathrm{M}}_{\mathrm{m}}$+${\mathrm{P}}_{\mathrm{m}}$+${\mathrm{W}}_{\mathrm{m}}$+${\text{}\mathrm{M}\text{}}_{\mathrm{p}}$+${\mathrm{S}}_{\mathrm{m}}$ | ${\mathrm{E}}_{\mathrm{m}}\text{}\mathrm{is}\text{}\mathrm{TVEC}$(kg);${\text{}\mathrm{M}}_{\mathrm{m}}$ is EEC (kg);${\text{}\mathrm{P}}_{\mathrm{m}}$ is the worker EC (kg) |

MM | ${\mathrm{EC}}_{\mathrm{MM}\text{}}$$={\mathrm{E}}_{\mathrm{m}}$+${\mathrm{M}}_{\mathrm{m}}$+${\text{}\mathrm{P}}_{\mathrm{m}}$+${\text{}\mathrm{M}}_{\mathrm{p}}$+ ${\text{}\mathrm{R}}_{\mathrm{m}}$ | ${\mathrm{M}}_{\mathrm{p}}$ is PGGDSEC (kg);${\text{}\mathrm{R}}_{\mathrm{m}}$ is the material EC (kg) |

CI | ${\mathrm{EC}}_{\mathrm{CI}}$$={\mathrm{M}}_{\mathrm{m}}$+${\mathrm{P}}_{\mathrm{m}}$+${\text{}\mathrm{M}}_{\mathrm{p}}$$+{\text{}\mathrm{R}}_{\mathrm{m}}$$+{\text{}\mathrm{L}}_{\mathrm{m}}$ | ${\mathrm{L}}_{\mathrm{m}}$ is the EC of power and fuel consumption during construction (kg) |

MO | ${\mathrm{EC}}_{\mathrm{MO}}$=${\text{}\mathrm{C}}_{\mathrm{m}}$+${\mathrm{S}}_{\mathrm{m}}$+(8) + (9) + (10) +${\text{}\mathrm{E}}_{\mathrm{MM}}$$+{\mathrm{E}}_{\mathrm{CI}}$ | ${\mathrm{C}}_{\mathrm{m}}$ is TVEC (kg);${\text{}\mathrm{S}}_{\mathrm{m}}$ is the EC number (kg) |

DR | ${\mathrm{EC}}_{\mathrm{DR}}$$={\text{}\mathrm{E}}_{\mathrm{m}}$+${\text{}\mathrm{M}}_{\mathrm{m}}$+${\mathrm{P}}_{\mathrm{m}}$+${\text{}\mathrm{M}}_{\mathrm{p}}$$+{\text{}\mathrm{R}}_{\mathrm{m}}$ | ${\mathrm{W}}_{\mathrm{m}}$ is OFEC (kg) |

**Table 5.**Summary table of bridge environmental impact contributions (Table 4 formula calculation).

Environmental Contribution Stage | Bridge Name | GWP (kg) | AP (kg) | FEP (kg) | PMFP (kg) | WP (kg) | Transportation Contribution (kg) | The Proportion |
---|---|---|---|---|---|---|---|---|

Survey and design | SQ | 322,603.10 | 0.29 | 1444.66 | 14.12 | 5609.22 | 4525.62 | 1.37% |

EH | 6,075,65.23 | 0.52 | 2781.15 | 27.12 | 10,798.15 | 12,504.05 | 2.01% | |

Material manufacturing | SQ | 35,783,970.10 | 338,386.32 | 218,677.39 | 1,027,034.48 | 1,911,752.52 | 551,965.85 | 1.41% |

EH | 32,607,070.35 | 297,990.71 | 193,603.27 | 915,282.34 | 1,679,151.52 | 554,608.67 | 1.55% | |

Construction and installation | SQ | 21,604,311.50 | 334.85 | 22,516.66 | 1212.05 | 86,335.68 | 98,670.19 | 0.45% |

EH | 23,954,772.44 | 337.00 | 29,475.12 | 1389.47 | 113,471.60 | 89,074.70 | 0.37% | |

Maintenance and operation | SQ | 79,173,042.18 | 155,891.23 | 514,843.27 | 702,336.77 | 1,390,668.18 | 1,057,111.78 | 1.29% |

EH | 69,602,711.16 | 238,252.02 | 466,229.79 | 850,705.27 | 1,325,559.61 | 1,345,777.99 | 1.86% | |

Disassembly and recycling | SQ | 4,184,764.66 | 43.94 | 234.27 | 31.98 | 891.24 | 1,985,014.96 | 47.42% |

EH | 2,412,687.90 | 12.23 | 316.02 | 11.24 | 1222.36 | 194,206.26 | 8.04% |

Types of EC | Bridge Name | Analysis Value (kg) | V1 | V2 | V3 | V4 | V5 |
---|---|---|---|---|---|---|---|

GWP | SQ | 141,068,691.53 | 0.23% | 25.37% | 15.31% | 56.12% | 2.97% |

EH | 129,184,807.08 | 0.47% | 25.24% | 18.54% | 53.88% | 1.87% | |

AP | SQ | 494,656.64 | 0.00% | 68.41% | 0.07% | 31.52% | 0.01% |

EH | 536,917.19 | 0.00% | 55.50% | 0.06% | 44.43% | 0.00% | |

FEP | SQ | 757,716.26 | 0.19% | 28.86% | 2.97% | 67.95% | 0.03% |

EH | 693,040.75 | 0.40% | 27.94% | 4.25% | 67.36% | 0.05% | |

PMFP | SQ | 1,730,629.40 | 0.00% | 59.34% | 0.07% | 40.58% | 0.00% |

EH | 1,768,574.83 | 0.00% | 51.75% | 0.08% | 48.17% | 0.00% | |

WP | SQ | 3,395,256.84 | 0.17% | 51.75% | 0.08% | 48.17% | 0.00% |

EH | 3,132,009.78 | 0.34% | 53.61% | 3.62% | 42.38% | 0.04% |

Impact Factor | Bridge Name | GWP | AP | FEP | PMFP | WP |
---|---|---|---|---|---|---|

${a}_{i}$ | SQ | 0.96% | 0.00% | 0.01% | 0.01% | 0.02% |

EH | 0.95% | 0.00% | 0.01% | 0.01% | 0.02% | |

${V}_{i}$ | SQ | 20.00% | 20.00% | 20.00% | 20.00% | 20.00% |

EH | 20.00% | 20.00% | 20.00% | 20.00% | 20.00% | |

${K}_{j}$ | SQ | 0.0478% | 0.0002% | 0.0003% | 0.0006% | 0.0012% |

EH | 0.0477% | 0.0002% | 0.0003% | 0.0007% | 0.0012% | |

${K}_{j}^{\prime}$ | SQ | 0.9567% | 0.0034% | 0.0051% | 0.0117% | 0.0230% |

EH | 0.9547% | 0.0040% | 0.0051% | 0.0131% | 0.0231% |

Bridge Name | Car Type | Emission Coefficient (g/km) | 2002~2011 Year | 2011~2020 Year | 2021~2110 Year |
---|---|---|---|---|---|

Number of Passing Vehicles (Units) | |||||

SQ | Passenger car | 305.4g/km | 0.00 | 250,608.00 | 2,243,160.00 |

Commercial vehicle | 271.8g/km | 0.00 | 82,896.00 | 735,480.00 | |

New energy vehicle | 292.5g/km | 0.00 | 387.00 | 3010.00 | |

EH | Passenger car | 305.4g/km | 212,700.00 | 243,156.00 | 1,982,869.33 |

Commercial vehicle | 271.8g/km | 110,400.00 | 125,592.00 | 1,023,578.67 | |

New energy vehicle | 292.5g/km | 0.00 | 36.00 | 255.11 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhou, Z.-W.; Alcalá, J.; Kripka, M.; Yepes, V.
Life Cycle Assessment of Bridges Using Bayesian Networks and Fuzzy Mathematics. *Appl. Sci.* **2021**, *11*, 4916.
https://doi.org/10.3390/app11114916

**AMA Style**

Zhou Z-W, Alcalá J, Kripka M, Yepes V.
Life Cycle Assessment of Bridges Using Bayesian Networks and Fuzzy Mathematics. *Applied Sciences*. 2021; 11(11):4916.
https://doi.org/10.3390/app11114916

**Chicago/Turabian Style**

Zhou, Zhi-Wu, Julián Alcalá, Moacir Kripka, and Víctor Yepes.
2021. "Life Cycle Assessment of Bridges Using Bayesian Networks and Fuzzy Mathematics" *Applied Sciences* 11, no. 11: 4916.
https://doi.org/10.3390/app11114916