A Novel Earwax Self-Sampling Device: A Feasibility Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Earwax Sample Collection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HbA1c | Glycated Haemoglobin |
BMI | Body Mass Index |
CV | Coefficients of Variation |
VSSRDs | Vector of Sample’s Squared Relative Dispersion |
Appendix A
References
- Prokop-Prigge, K.A.; Thaler, E.; Wysocki, C.J.; Preti, G. Identification of volatile organic compounds in human cerumen. J. Chromatogr. B 2014, 953-954, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Shokry, E.; De Oliveira, A.E.; Avelino, M.A.G.; De Deus, M.M.; Filho, N.R.A. Earwax: A neglected body secretion or a step ahead in clinical diagnosis? A pilot study. J. Proteom. 2017, 159, 92–101. [Google Scholar] [CrossRef]
- Dagogo-Jack, S. Pitfalls in the use of HbA1c as a diagnostic test: The ethnic conundrum. Nat. Rev. Endocrinol. 2010, 6, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Herane-Vives, A.; Espinoza, S.; Sandoval, R.; Ortega, L.; Alameda, L.; Young, A.H.; Arnone, D.; Hayes, A.; Benöhr, J. A Novel Earwax Method to Measure Acute and Chronic Glucose Levels. Diagnostics 2020, 10, 1069. [Google Scholar] [CrossRef] [PubMed]
- Sevy, J.O.; Singh, A. Cerumen Impaction; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Pothier, D.D.; Hall, C.; Gillett, S. A comparison of endoscopic and microscopic removal of wax: A randomised clinical trial. Clin. Otolaryngol. 2006, 31, 375–380. [Google Scholar] [CrossRef]
- Ghanem, N. The Antimicrobial Activity of Some Honey Bee Products and some Saudi Folkloric Plant Extracts. J. King Abdulaziz Univ. 2011, 23, 47–62. [Google Scholar] [CrossRef]
- Stoeckelhuber, M.; Matthias, C.; Andratschke, M.; Koechler, C.; Herzmann, S.; Sulz, A.; Welsch, U. Human ceruminous gland: Ultrastructure and histochemical analysis of antimicrobial and cytoskeletal components. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2006, 288, 877–884. [Google Scholar] [CrossRef]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac. J. Trop. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.J.; Loveman, E.; Gospodarevskaya, E.; Harris, P.; Bird, A.; Bryant, J.; Scott, D.A.; Davidson, P.; Little, P.; Coppin, R. The safety and effectiveness of different methods of earwax removal: A systematic review and economic evaluation. Health Technol. Assess. 2010, 14, 1–192. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.B.; Thaver, S.; Govender, S.M. Self-ear cleaning practices and the associated risk of ear injuries and ear-related symptoms in a group of university students. J. Public Health Afr. 2017, 8, 555. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Zaheer, S.A.I.; Shabbir, S.M.A.; Rao, S.; Islam, T.; Ahmed, B. Association of Dermatological Conditions of External Ear with the Use of Cotton Buds. J. Enam. Med. Coll. 2014, 4, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Nussinovitch, M.; Rimon, A.; Volovitz, B.; Raveh, E.; Prais, D.; Amir, J. Cotton-tip applicators as a leading cause of otitis externa. Int. J. Pediatr. Otorhinolaryngol. 2004, 68, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Pata, Y.S.; Ozturk, C.; Akbas, Y.; Gorur, K.; Unal, M.; Ozcan, C. Has cerumen a protective role in recurrent external otitis? Am. J. Otolaryngol. 2003, 24, 209–212. [Google Scholar] [CrossRef]
- Mochizuki, H.; Tanaka, S.; Morita, T.; Wasaka, T.; Sadato, N.; Kakigi, R. The cerebral representation of scratching-induced pleasantness. J. Neurophysiol. 2014, 111, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Summerfield, A.; Meurens, F.; Ricklin, M.E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 2015, 66, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Denda, M.; Katagiri, C.; Hirao, T.; Maruyama, N.; Takahashi, M. Some magnesium salts and a mixture of magnesium and calcium salts accelerate skin barrier recovery. Arch. Dermatol. Res. 1999, 291, 560–563. [Google Scholar] [CrossRef]
- Cipriani, C.; Taborelli, G.; Rebora, A.; Cardo, P.P. A technique for measuring the rate of cerumen production. Laryngoscope 1986, 96, 204–205. [Google Scholar] [CrossRef]
- Bortz, J.T.; Wertz, P.W.; Downing, D.T. Composition of cerumen lipids. J. Am. Acad. Dermatol. 1990, 23, 845–849. [Google Scholar] [CrossRef]
- Spector, P.E. Measurement of human service staff satisfaction: Development of the Job Satisfaction Survey. Am. J. Community Psychol. 1985, 13, 693. [Google Scholar] [CrossRef]
- Cipriani, C.; Taborelli, G.; Gaddia, G. Production rate and composition of cerumen: Influence of sex and season. Larygoscopegoscope 1990, 100, 275. [Google Scholar] [CrossRef]
- Crandell, C.C.; Roeser, R.J. Incidence of excessive/impacted cerumen in individuals with mental retardation: A longitudinal investigation. Am. J. Ment. Retard. 1993, 97, 568. [Google Scholar] [PubMed]
- Nelder, J.; Baker, R. Generalized linear models. Encycl. Stat. Sci. 1972. [Google Scholar] [CrossRef]
- Chiang, S.P.; Lowry, O.H.; Senturia, B.H. Micro-chemical studies on normal cerumen. I. The lipid and protein content of normal cerumen as affected by age and sex. Laryngoscope 1955, 65, 927–934. [Google Scholar] [CrossRef]
- Saxby, C.; Williams, R.; Hickey, S. Finding the most effective cerumenolytic. J. Laryngol. Otol. 2013, 127, 1067. [Google Scholar] [CrossRef]
- Hamam, S.E.M.; Hamoda, M.F.; Shaban, H.I.; Kilani, A.S. Crude oil dissolution in saline water. Water. Air. Soil Pollut. 1988, 37, 55. [Google Scholar] [CrossRef]
- Herrera, V.; Carrasco, C.; Araneda, P.; Sandoval, J.M. Chemical quality of urban and rural drinking water, in Tarapaca, northern arid area of Chile. J. Chil. Chem. Soc. 2019, 64, 4421. [Google Scholar] [CrossRef] [Green Version]
- Arora, T.; Grey, I.; Östlundh, L.; Hubert Lam, K.B.; Omar, O.M.; Arnone, N. The prevalence of psychological consequences of COVID-19: A systematic review and meta-analysis of observational studies. J. Health Psychol. 2020. [Google Scholar] [CrossRef]
- Lum, C.L.; Jeyanthi, S.; Prepageran, N.; Vadivelu, J.; Raman, R. Antibacterial and antifungal properties of human cerumen. J. Laryngol. Otol. 2009, 123, 375. [Google Scholar] [CrossRef]
- Hexa Reports. Global Cotton Bud Market Research Report. 2017. Available online: http://www.hexareports (accessed on 20 April 2021).
- Zhai, H.; Willard, P.; Maibach, H.I. Putative skin-protective formulations in preventing and/or inhibiting experimentally-produced irritant and allergic contact dermatitis. Contact Dermatitis 1999, 41, 190. [Google Scholar] [CrossRef] [PubMed]
- Herane-Vives, A.; de Angel, V.; Papadopoulos, A.; Wise, T.; Chua, K.-C.; Strawbridge, R.; Castillo, D.; Arnone, D.; Young, A.H.; Cleare, A.J. Short-term and long-term measures of cortisol in saliva and hair in atypical and non-atypical depression. Acta Psychiatr. Scand. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, S.; Duncko, R.; Papadopoulos, A. Sociodemographic, lifestyle, and psychosocial determinants of hair cortisol–Evidence from a south London community sample. Psychoneuroendocrinology 2016. [Google Scholar] [CrossRef]
- Herane-Vives, A.; Ortega, L.; Sandoval, R.; Young, A.H.; Cleare, A.; Espinoza, S.; Hayes, A.; Benöhr, J. Measuring Earwax Cortisol Concentration Using a Non-Stressful Sampling Method. Heliyon 2020, 6, e05124. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.F.; Wilson, J.A.; Ross, L.; Barr-Hamilton, R.M. Ear wax removal: A survey of current practice. BMJ 1990, 301, 1251. [Google Scholar] [CrossRef] [Green Version]
- Lamberts, H. Het Huis van de Huisarts: Verslag van Het Transitieproject; Meditekst: Lelystad, The Netherlands, 1991. [Google Scholar]
- Memel, D.; Langley, C.; Watkins, C.; Laue, B.; Birchall, M.; Bachmann, M. Effectiveness of ear syringing in general practice: A randomised controlled trial and patients’ experiences. Br. J. Gen. Pract. 2002, 52, 906. [Google Scholar] [PubMed]
- Versi, E. “Gold standard” is an appropriate term. BMJ 1992, 305, 187. [Google Scholar] [CrossRef] [Green Version]
- Ftouh, S.; Harrop-Griffiths, K.; Harker, M.; Munro, K.J.; Leverton, T. Hearing loss in adults, assessment and management: Summary of NICE guidance. BMJ 2018, 361. [Google Scholar] [CrossRef] [PubMed]
Socio-Demographic Variables | Result | |||
---|---|---|---|---|
N: Female (%) | 20, (54) | |||
Age (Years), Mean (SD) | 29.9, (1.4) | |||
Ethnicity | Mixed race, N (%) | 36, (96) | ||
White N (%) | 1, (4) | |||
Alcohol | Yesδ, N (%) | 10, (27) | ||
Unitsϕ, Mean, (SD) | 1.3, (0.5) | |||
Tobacco (yes), N (%) | 9, (24) | |||
Contraceptive pill (yes), N (%) | 9, (53) | |||
Medical or psychiatric illness, N (%) | 0, (0) | |||
Anthropometric Variables | Q1 | Median | Mean, (SD) | Q3 |
Weight (Kg) Mean, (SD) | 62 | 72 | 72.5, (2.5) | 78 |
BMI (Kg/m2), Mean (SD) | 23.3 | 24.9 | 25.6, (0.6) | 26.7 |
Waist circumference (cm), Mean (SD) | 77 | 86 | 85.9, (2.4) | 95 |
Variables | β | p-Value | CI |
---|---|---|---|
Age | 0.6 | 0.77 | −3.9; 5.3 |
Sex | 53.8 | 0.13 | −15.1; 122.8 |
Alcohol (unit) Ω | −2.2 | 0.70 | −13.5; 9.1 |
Tobacco | −26.0 | 0.49 | −101.1; 49.0 |
BMI | 5.9 | 0.34 | −6.3, 18.2 |
Waist circumference | 0.8 | 0.53 | −1.7; 3.3 |
Anti-conceptive pill | 65.5 | 0.14 | −21.6; 150.7 |
N | Questions: | Results: | ||||||
---|---|---|---|---|---|---|---|---|
Meaning | 1st Quartile | Median | Mean (s.d) | 3rd Quartile | ||||
1 | How would describe your experience using the self-sampling external ear device? | 1 = Very uncomfortable, 5 = Very comfortable | 4 | 4 | 4.0 (1.0) | 5 | ||
2 | How effective was the self-sampling external ear device for cleaning your external ears? | 1 = Very ineffective, 5 = Very effective | 4 | 4 | 4.2 (0.9) | 5 | ||
3 | How safe do you consider the use of the self-sampling external ear device inside your ear? | 1 = Very unsafe,, 5 = Very safe | 4 | 4 | 4.3 (0.6) | 5 | ||
4 | Do you know of “cotton buds”? | n, (%) | Yes | No | ||||
28, (100) | 0, (0) | |||||||
5 | How often do you use “cotton buds”? | n, (%) | Every day | Almost every day | Sometimes | Seldom | Nearly never | Never |
2, (7.1) | 8, (28.6) | 8, (28.6) | 1, (3.6) | 3, (10.7) | 6, (21.4) | |||
Meaning | 1st Quartile | Median | Mean (s.d) | 3rd Quartile | ||||
6 | Do you think that the use of the self-sampling external ear device was more comfortable than “cotton buds”? | 1 = Extremely disagree, 5 = Extremely agree | 2 | 3 | 3.1, (1.4) | 4.5 | ||
7 | Do you think that the use of the self-sampling external ear device for cleaning your ears was more effective than “cotton buds”? | 1 = Extremely disagree, 5 = Extremely agree | 3 | 4 | 3.9, (1.2) | 5 | ||
8 | Do you think that the use of the self-sampling external ear device was safer than “cotton buds” | 1 = Extremely disagree, 5 = Extremely agree | 4 | 4 | 4.2, (0.9) | 5 |
Ear Side | Left | Right | |||||||
---|---|---|---|---|---|---|---|---|---|
Extraction procedure | Clinical Methodω (mg) | Clinical Methodω (mg) | p-Value ψ | ||||||
Visit | Q1 | Median | Mean (s.d) | Q3 | Q1 | Median | Mean (s.d) | Q3 | |
Baseline (day = 0) | 6.22 | 8.54 | 10.70, (6.36) | 15.69 | 5.06 | 7.92 | 9.23, (4.73) | 13.67 | 0.08 |
Extraction procedure | Clinical Method ω (mg) | Self-extraction method φ (mg) | p-Value ψ | ||||||
Visit | Q1 | Median | Mean (s.d) | Q3 | Q1 | Median | Mean (s.d) | Q3 | |
Follow-up (day = 30) | 12.0 | 17.3 | 19.1 (11.3) | 19.6 | 79.8 | 124.7 | 155.8 (110.7) | 200.3 | <0.01 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herane-Vives, A.; Sandoval, R.; Ortega, L.; Espinoza, S.; Cleare, A.; Hayes, A.; Ortuzar, E.; Valdenegro, T.; Aguiló, B.; Benöhr, J.; et al. A Novel Earwax Self-Sampling Device: A Feasibility Study. Appl. Sci. 2021, 11, 4882. https://doi.org/10.3390/app11114882
Herane-Vives A, Sandoval R, Ortega L, Espinoza S, Cleare A, Hayes A, Ortuzar E, Valdenegro T, Aguiló B, Benöhr J, et al. A Novel Earwax Self-Sampling Device: A Feasibility Study. Applied Sciences. 2021; 11(11):4882. https://doi.org/10.3390/app11114882
Chicago/Turabian StyleHerane-Vives, Andrés, Rodrigo Sandoval, Lorena Ortega, Susana Espinoza, Anthony Cleare, Alexander Hayes, Esteban Ortuzar, Tomás Valdenegro, Bruno Aguiló, Jan Benöhr, and et al. 2021. "A Novel Earwax Self-Sampling Device: A Feasibility Study" Applied Sciences 11, no. 11: 4882. https://doi.org/10.3390/app11114882
APA StyleHerane-Vives, A., Sandoval, R., Ortega, L., Espinoza, S., Cleare, A., Hayes, A., Ortuzar, E., Valdenegro, T., Aguiló, B., Benöhr, J., & Arnone, D. (2021). A Novel Earwax Self-Sampling Device: A Feasibility Study. Applied Sciences, 11(11), 4882. https://doi.org/10.3390/app11114882