Physico-Chemical Parameters and Health Risk Analysis of Groundwater Quality
Abstract
:1. Introduction
1.1. The Efficiency of the Economic Instruments Used in the Environmental Protection Policy
1.1.1. Economic Instruments Facilitate the Internalization of Negative Externalities Generated by Polluting Activities
1.1.2. Economic Instruments Induce Changes in Both the Behavior of Producers and the Behavior of Consumers
1.1.3. Economic Instruments Are Often More Cost-Effective Than Other Instruments
1.1.4. Economic Instruments Encourage Investments in Green Technology
1.1.5. Economic Instruments Generate Income for Environmental Investments
1.1.6. Economic Instruments Support the “Polluter Pays” and “User Pays” Principles
2. Materials and Methods
2.1. The Study Area
2.2. Sampling
2.3. Groundwater Analysis
3. Results
4. Discussion
- Cwater—metal content in water samples;
- I—daily water intake;
- BM—average body mass of an adult;
- RfD—the value for the average reference dose of metals.
- for the groundwater sample from Constanta Zn> Pb> Cr> Mn> Cd, Cu, Ni;
- for the groundwater sample from Palazu Mare Pb> Ni> Zn> Mn> Cr> Cd, Cu;
- for the groundwater sample from Palas Zn> Mn> Cr> Cd, Pb, Cu, Ni;
- for the groundwater sample from Lumina Zn> Pb> Mn> Cr> Cu> Cd, Ni;
- for the groundwater sample from Corbu Zn> Cr> Mn> Cd, Pb, Cu, Ni;
- for the groundwater sample from Casimcea Zn> Pb> Cr> Mn> Cd, Cu, Ni.
5. Conclusions
- This study has revealed that the pH values of well water are slightly alkaline and varied from 7.22 pH units to 7.91 pH units and are within the permissible limit prescribed by the Romanian legislation.
- Regarding the conductivity of the studied groundwater, the highest value was observed in Casimcea (3070 μs/cm); the higher EC value of the well could be attributed to its shallow depth, as ongoing surface activities can affect the conductivity values.
- The concentration of nitrate contained in water seems to be the high agricultural waste and sewage contamination. The highest level of nitrates was found in the waters of Casimcea (532 mg/L), while for nitrites, the highest level was highlighted also in the groundwater in Casimcea (0.245 mg/L). In the region of Dobrudja, the nitrate level exceeded the maximum limits allowed by the Romanian legislation.
- The studied waters fall into the category of hard waters (those from Lumina and Corbu) and very hard waters, with hardness values over 30 degrees German hardness.
- Higher turbidity affects the life indirectly by cutting the light to be utilized by the phytoplankton growth. At all sites, turbidity is low, because there is no exploitation activity in the area.
- Ammonium is an indicator parameter of recent organic pollution. Its sudden increase indicates the intervention of a pollution that can be both natural and artificial origin. The ammonium parameter registers the highest value in Corbu (0.075 mg/L).
- Chloride is one of the most important parameters in assessing the water quality. The higher concentration of chloride indicates higher degree of organic pollution. The highest value for chloride concentrations was determined in Casimcea (312.7 mg/L) and the lowest value in Lumina (89.0 mg/L).
- The concentrations of the studied metals were within the maximum allowed limits established by the Romanian legislation regarding the maximum allowed limits of heavy metals in drinking water.
- In the case of the water from Palazu Mare the health risk index exceeds the maximum value for lead, zinc, and nickel. This exceedance is also observed in the case of the waters from Lumina and Casimcea for zinc, thus demonstrating that their use presents a danger to human health.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef] [PubMed]
- Bretotean, M. Groundwaters, An Important Natural Wealth; Ceres: Bucharest, Romania, 1981. (In Romanian) [Google Scholar]
- Shakerkhatibi, M.; Mosaferi, M.; Pourakbar, M.; Ahmadnejad, M.; Safavi, N.; Banitorab, F. Comprehensive investigation of groundwater quality in the north-west of Iran: Physicochemical and heavy metal analysis. Groundw. Sustain. Dev. 2019, 8, 156–168. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Zacchaeus, O.O.; Balogun Adeyemi, M.; Azeem Adedeji, A.; Adegoke, K.A.; Okehi Anumah, A.; Taiwo, A.M.; Ganiyu, S.A. Effects of industrialization on groundwater quality in Shagamu and Ota industrial areas of Ogun state, Nigeria. Heliyon 2020, 6, 04353. [Google Scholar] [CrossRef]
- Sambito, M.; Severino, A.; Freni, G.; Neduzha, L. A Systematic Review of the Hydrological, Environmental and Durability Performance of Permeable Pavement Systems. Sustainability 2021, 13, 4509. [Google Scholar] [CrossRef]
- Raval, N.P.; Kumar, M. Geogenic arsenic removal through core–shell based functionalized nanoparticles: Groundwater in-situ treatment perspective in the post–COVID anthropocene. J. Hazard. Mater. 2021, 402, 123466. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M. Runoff from firework manufacturing as major perchlorate source in the surface waters around Diwali in Ahmedabad, India. J. Environ. Manag. 2020, 273, 111091. [Google Scholar] [CrossRef] [PubMed]
- Masoud, A.A. Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. J. Afr. Earth Sci. 2014, 95, 123–137. [Google Scholar] [CrossRef]
- Atwia, M.G.; Abu-Heleika, M.M.; El-Horiny, M.M. Hydrogeochemical and vertical electrical soundings for groundwater investigations, Burg El-Arab area, Northwestern Coast of Egypt. J. Afr. Earth Sci. 2013, 80, 8–20. [Google Scholar] [CrossRef]
- Fathy Abdalla, Ramadan Khalil, Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt. J. Afr. Earth Sci. 2018, 141, 164–178. [CrossRef]
- He, B.; He, J.; Wang, l.; Zhang, X.; Bi, E. Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: Based on least squares surface fitting model. Water Res. 2019, 162, 114880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Huanga, G.; Houa, Q.; Liua, C.; Zhanga, Y.; Zhang, Q. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. J. Hydrol. 2019, 577, 124004. [Google Scholar] [CrossRef]
- Jia, X.; O’Connor, D.; Hou, D.; Jin, Y.; Li, G.; Zheng, C.; Ok, Y.S.; Daniel, C.W.; Tsang, D.C.W.; Luo, J. Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 2019, 672, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.-H.; Lee, E.; Lee, K.-K. Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination: Implications for an effective groundwater management strategy. J. Environ. Manag. 2020, 268, 110646. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Kim, H.; Blicher-Mathiesen, G. Long-term nitrate response in shallow groundwater to agricultural N regulations in Denmark. J. Environ. Manag. 2019, 240, 66–74. [Google Scholar] [CrossRef]
- Taufiq, A.; Effendi, A.J.; Iskandar, I.; Hosono, T.; Hutasoit, L.M. Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters. Water Res. 2019, 148, 292–305. [Google Scholar] [CrossRef]
- Huan, H.; Hu, L.; Yang, Y.; Jia, Y.; Lian, X.; Ma, X.; Jiang, Y.; Xi, B. Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer. Environ. Int. 2020, 137, 105532. [Google Scholar] [CrossRef]
- Serio, F.; Miglietta, P.P.; Lamastra, L.; Ficocelli, S.; Intini, F.; Leo, F.D.; Donno, A.D. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018, 645, 1425–1431. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; Shashtri, S.; Kumar, A.; Kumar, P.; Mallick, J. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. J. Geochem. Explor. 2017, 175, 59–71. [Google Scholar] [CrossRef]
- Dumitrescu, I.C. Sustainable Development and the Natural Environment; Bren: Bucharest, Romania, 2005. (In Romanian) [Google Scholar]
- Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R. Changes in the total costs of the English and Welsh water and sewerage industry: The decomposed effect of price and quantity inputs on efficiency. Util. Policy 2020, 66, 101063. [Google Scholar] [CrossRef]
- Ruiz-Rosa, I.; García-Rodríguez, F.J.; Antonova, N. Developing a methodology to recover the cost of wastewater reuse: A proposal based on the polluter pays principle. Util. Policy 2020, 65, 101067. [Google Scholar] [CrossRef]
- Luppi, B.; Parisi, F.; Rajagopalan, S. The rise and fall of the polluter-pays principle in developing countries. Int. Rev. Law Econ. 2012, 32, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Tilton, J.E. Global climate policy and the polluter pays principle: A different perspective. Resour. Policy 2016, 50, 117–118. [Google Scholar] [CrossRef]
- Pișota, I.; Buta, I. Hidrology; EDP: Bucharest, Romania, 1984. (In Romanian) [Google Scholar]
- Law no. 458/2002 on Drinking Water Quality; published in the Legal Gazette of Romania, Part I, issue no. 552 of 29 July 2002; Romanian Parliament: Bucharest, Romania, 2002.
- Abeer, N.; Akbar Khan, S.; Muhammad, S.; Rasool, A.; Ahmad, I. Health risk assessment and provenance of arsenic and heavy metal in drinking water in Islamabad, Pakistan. Environ. Technol. Innov. 2020, 20, 101171. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh Thind, P.; Mor, S.; Singh, T.; Mor, S. Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment. Environ. Pollut. 2019, 255, 113062. [Google Scholar] [CrossRef]
- Currell, M.J.; Cartwright, I.; Bradley, D.C.; Han, D. Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J. Hydrol. 2010, 385, 216–229. [Google Scholar] [CrossRef]
- Astuti, R.D.P.; Mallongi, A.; Amiruddin, R.; Hatta, M.; Rauf, A.U. Risk identification of heavy metals in well water surrounds watershedarea of Pangkajene, Indonesia. Gac Sanit. 2021, 35, S33–S37. [Google Scholar] [CrossRef]
- Pu, J.; Cao, M.; Zhang, Y.; Yuan, D.; Zhao, H. Hydrochemical indications of human impact on karst groundwater in a subtropical karst area, Chongqing, China. Environ Earth Sci. 2014, 72, 1683–1695. [Google Scholar] [CrossRef]
- Bodrud-Doza, M.; Islam, S.M.; Hasan, M.T.; Alam, F.; Haque, M.M.; Rakib, M.A.; Asad, M.A.; Rahman, M.A. Groundwater pollution by trace metals and human health risk assessment in central west part of Bangladesh. Groundw. Sustain. Dev. 2019, 9, 100219. [Google Scholar] [CrossRef]
- Bodrud-Doza, M.; Towfiqul Islam, A.R.M.; Ahmed, F.; Das, S.; Saha, N.; Rahman, M.S. Characterization of groundwater quality using water evaluationindices, multivariate statistics and geostatistics in central Bangladesh. Water Sci. 2016, 30, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, A.; Hassani, H.; Hassani, S.; Jabbari, N.; Belgheys, S.; Mousavi, F.; Rezaei, S. Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundw. Sustain. Dev. 2019, 9, 100245. [Google Scholar] [CrossRef]
- Masime, J.O. Analysis of the Levels of Arsenic, Nitrate, Nitrite and Phosphate in Home Made Brews, Spirits, Tap Water and in Raw Materials in Nairobi County; MST, Department of Chemistry, Technical University of Kenya: Nairobi, Kenya, 2016. [Google Scholar]
Metals | The Range µg/L | R2 | LOQ |
---|---|---|---|
Cd | 0.4–4 | 0.9913 | 0.00041 |
Cr | 2–20 | 0.9902 | 0.00206 |
Cu | 3–30 | 0.9902 | 0.00310 |
Fe | 3–30 | 0.9930 | 0.1183 |
Mn | 1.5–15 | 0.9978 | 0.00151 |
Ni | 7–70 | 0.9940 | 0.00708 |
Pb | 10–100 | 0.9946 | 0.01002 |
Zn | 0.5–5 | 0.9924 | 0.1076 |
Parameters | Constanta | Palazu Mare | Palas | Lumina | Corbu | Casimcea |
---|---|---|---|---|---|---|
pH | 7.22 | 7.23 | 7.5 | 7.54 | 7.44 | 7.91 |
C (σ) | 1862 | 2320 | 1370 | 969 | 1826 | 3070 |
TA | 11.1 | 13 | 8.65 | 11.1 | 9.4 | 8 |
175 | 473 | 118 | 0.132 | 70.1 | 532 | |
0.013 | 0.02 | 0.015 | 0.002 | 0.043 | 0.245 | |
dT German | 41.51 | 44.1 | 30.3 | 21.2 | 22.3 | 95.9 |
TU UTF | 0.013 | 0.11 | 0.2 | 0.75 | 0.02 | 0.15 |
0.003 | 0.001 | 0.001 | 0.003 | 0.075 | 0.047 | |
112.4 | 150.7 | 90.8 | 89 | 147.1 | 312.7 |
Metals µg/L | Constanta | Palazu Mare | Palas | Lumina | Corbu | Casimcea |
---|---|---|---|---|---|---|
Cd | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Pb | 0.47 | 1.01 | <LOQ | 0.11 | <LOQ | 0.11 |
Cu | <LOQ | <LOQ | <LOQ | 0.09 | <LOQ | <LOQ |
Cr | 12.67 | 15.32 | 8.25 | 7.86 | 6.45 | 7.82 |
Zn | 9.55 | 24.89 | 8.62 | 37.93 | 5.05 | 17.43 |
Mn | 0.67 | 2.85 | 1.48 | 3.66 | 0.25 | 0.53 |
Ni | <LOQ | 2.35 | <LOQ | <LOQ | <LOQ | <LOQ |
Fe | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Parameter | Unit of Measure | Maximum Permissible Limit |
---|---|---|
Ammonium | 0.50 | |
Chlorides | 250 | |
Conductivity | at 20 °C | 2500 |
Hardness | German degrees | 5 |
Nitrites | 50 | |
Nitrates | 0.50 | |
pH | pH units | |
Turbidity | UTF |
Cd | Pb | Cu | Cr | Zn | Mn | Ni | Fe | |
---|---|---|---|---|---|---|---|---|
Cd | 1 | |||||||
Pb | NaN | 1 | ||||||
Cu | NaN | −0.351 | 1 | |||||
Cr | NaN | 0.963 ** | −0.264 | 1 | ||||
Zn | NaN | 0.265 | 0.817 * | 0.157 | 1 | |||
Mn | NaN | 0.360 | 0.736 | 0.292 | 0.889 * | 1 | ||
Ni | NaN | 0.900 * | −0.200 | 0.791 | 0.302 | 0.450 | 1 | |
Fe | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1 |
Cd | Pb | Cu | Cr | Zn | Mn | Ni | Fe | |
---|---|---|---|---|---|---|---|---|
pH | NaN | −0.61 | 0.13 | −0.68 | 0.11 | −0.20 | −0.47 | NaN |
C | NaN | 0.29 | −0.62 | 0.21 | −0.22 | −0.48 | 0.28 | NaN |
TA | NaN | 0.84 * | 0.23 | 0.79 | 0.48 | 0.63 | 0.73 | NaN |
NaN | 0.53 | −0.50 | 0.45 | 0.36 | −0.14 | 0.54 | NaN | |
NaN | −0.23 | −0.28 | −0.29 | −0.08 | −0.45 | −0.19 | NaN | |
dT | NaN | 0.08 | −0.37 | 0.05 | −0.03 | −0.36 | 0.03 | NaN |
TU | NaN | −0.24 | 0.96 ** | −0.29 | 0.83 * | 0.78 | −0.17 | NaN |
NaN | −0.46 | −0.28 | −0.59 | −0.44 | −0.65 | −0.32 | NaN | |
NaN | −0.04 | −0.36 | −0.14 | −0.07 | −0.43 | 0.01 | NaN |
Metals | Constanta | Palazu Mare | Palas | Lumina | Corbu | Casimcea | |
---|---|---|---|---|---|---|---|
Cd | 0.0010 | - | - | - | - | - | - |
Pb | 0.0035 | 0.329 | 8.293 | - | 0.937 | - | 0.900 |
Cu | 0.0400 | - | - | - | 0.066 | - | - |
Cr | 1.5000 | 0.241 | 0.291 | 0.157 | 0.149 | 0.122 | 0.148 |
Zn | 0.3000 | 0.910 | 2.370 | 0.821 | 3.612 | 0.481 | 1.66 |
Mn | 0.1400 | 0.095 | 0.582 | 0.302 | 0.747 | 0.052 | 0.108 |
Ni | 0.0200 | - | 3.355 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soceanu, A.; Dobrinas, S.; Dumitrescu, C.I.; Manea, N.; Sirbu, A.; Popescu, V.; Vizitiu, G. Physico-Chemical Parameters and Health Risk Analysis of Groundwater Quality. Appl. Sci. 2021, 11, 4775. https://doi.org/10.3390/app11114775
Soceanu A, Dobrinas S, Dumitrescu CI, Manea N, Sirbu A, Popescu V, Vizitiu G. Physico-Chemical Parameters and Health Risk Analysis of Groundwater Quality. Applied Sciences. 2021; 11(11):4775. https://doi.org/10.3390/app11114775
Chicago/Turabian StyleSoceanu, Alina, Simona Dobrinas, Corina Ionela Dumitrescu, Natalia Manea, Anca Sirbu, Viorica Popescu, and Georgiana Vizitiu. 2021. "Physico-Chemical Parameters and Health Risk Analysis of Groundwater Quality" Applied Sciences 11, no. 11: 4775. https://doi.org/10.3390/app11114775
APA StyleSoceanu, A., Dobrinas, S., Dumitrescu, C. I., Manea, N., Sirbu, A., Popescu, V., & Vizitiu, G. (2021). Physico-Chemical Parameters and Health Risk Analysis of Groundwater Quality. Applied Sciences, 11(11), 4775. https://doi.org/10.3390/app11114775