Thiosulfinate-Enriched Allium sativum Extract as an Adjunct to Antibiotic Treatment of Sepsis in a Rat Peritonitis Model
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sepsis Model
2.2. Thiosulfinate-Enriched Allium sativum Extract
2.3. Experimental Design and Analytical Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Derek, C.; Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar]
- Deutschman, C.S.; Tracey, K.J. Sepsis: Current dogma and new perspectives. Immunity 2014, 40, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Sprung, C.L.; Sakr, Y.; Vincent, J.L.; Le Gall, J.R.; Reinhart, K.; Ranieri, V.M.; Gerlach, H.; Fielden, J.; Groba, C.B.; Payen, D. An evaluation of systemic inflammatory response syndrome signs in the sepsis occurrence in acutely III patients (SOAP) study. Intensive Care Med. 2016, 32, 21–27. [Google Scholar]
- Tattelman, E. Health effects of garlic. Am. Fam. Physician 2005, 72, 103–106. [Google Scholar] [PubMed]
- Keiss, H.P.; Dirsch, V.M.; Hartung, T.; Haffner, T.; Trueman, L.; Auger, J.; Kahane, R.; Vollmar, A.M. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-κB activity. J. Nutr. 2003, 133, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Sela, U.; Ganor, S.; Hecht, I.; Brill, A.; Miron, T.; Rabinkov, A.; Wilchek, M.; Mirelman, D.; Lider, O.; Hershkoviz, R. Allicin inhibits SDF-1 a -induced T cell interactions with fibronectin and endothelial cells by down-regulating cytoskeleton rearrangement, Pyk-2 phosphorylation and VLA-4 expression. Immunology 2014, 111, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Bruk, R.; Aeed, H.; Brazovsky, E.; Noor, T.; Herskoviz, R. Allicin, the active component of garlic, prevents immune-mediated, concanavalin A-induced hepatic injury in mice. Liver Int. 2005, 25, 613–621. [Google Scholar] [CrossRef]
- Apitz-Castro, R.; Escalante, J.; Vargas, R.; Jain, M.K. Ajoene, the antiplatelet principle of garlic, synergistically potentiates the antiaggregatory action of prostacyclin, forskolin, indomethacin and dypiridamole on human platelets. Thromb. Res. 1984, 42, 303–311. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Thompson, B.T.; Finfer, S.; Barie, P.S.; Dhainaut, J.F.; Douglas, I.S.; Gårdlund, B.; Marshall, J.C.; Rhodes, A. PROWESS-SHOCK Academic Steering Committee. Unblinding plan of PROWESS-SHOCK trial. Intensive Care Med. 2011, 37, 1384–1385. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Sébille, V.; Charpentier, C.; Bollaert, P.E.; François, B.; Korach, J.M.; Capellier, G.; Cohen, Y.; Azoulay, E.; Troché, G.; et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002, 88, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Taccone, F.S.; Stordeur, P.; De backer, D.; Creteur, J.; Vincent, J.L. Gamma-globulin levels in patients whit community acquired septic shock. Shock 2009, 32, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Allingstrup, M.; Wetterslev, J.; Ravn, F.B.; Møller, A.M.; Afshari, A. Antithrombin III for critically ill patients: A systematic review with meta–analysis and trial sequential analysis. Intensive Care Med. 2016, 42, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, P.; Wall, P.; van Griensven, M.; McConnell, K.; Lang, C.; Buchman, T. Shock supports the use of animal research reporting guidelines. Shock 2012, 8, 1–3. [Google Scholar] [CrossRef]
- Fujisawa, H.; Suma, K.; Origuchi, K.; Kumagai, H.; Seki, T.; Ariga, T. Biological and chemical stability of garlic-derived allicin. J. Agric. Food Chem. 2008, 56, 4229–4235. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, O.; Illescas, S.; González, J.C.; Padilla, D.; Villarejo, P.; Baladrón, V.; Galán, R.; Bejarano, N.; Medina-Prado, L.; Villaseca, N.; et al. Development of animal experimental model for bacterial peritonitis. Rev. Esp. Quimioter. 2020, 33, 18–23. [Google Scholar] [CrossRef]
- Guillon, A.; Preau, S.; Aboab, J.; Azabou, E.; Jung, B.; Silva, S.; Textoris, J.; Uhel, F.; Vodovar, D.; Zafrani, L.; et al. Preclinical septic shock research: Why we need an animal ICU. Ann. Intensive Care. 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Van der Poll, T. Preclinical Sepsis Models. Surg. Infect. 2012, 13, 287–292. [Google Scholar] [CrossRef]
- Sivam, G.P. Protection against Helicobacter pylori and other bacterial infections by garlic. J. Nutr. 2001, 131, 1106S–1108S. [Google Scholar] [CrossRef] [Green Version]
- Lawson, L.; Wood, S.C.; Hunghes, B.G. HPLC analysis of allicin and other thiosulfinates in garlic clove homogenates. Plant Med. 1991, 57, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staba, E.J.; Lash, L.; Staba, J.E. A commentary on the effects of garlic extraction and formulation on product composition. J. Nutr. 2001, 131, 1118S–1119S. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, B.M.; Chittock, D.R.; Russell, J.A.; Walley, K.R. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 2002, 96, 576–582. [Google Scholar] [CrossRef]
- Reinhart, K.; Karzai, W. Anti-tumor necrosis factor therapy in sepsis: Update on clinical trials and lesson learned. Critical Care Med. 2001, 29, S121–S125. [Google Scholar] [CrossRef] [PubMed]
- Arreola, R.; Quintero-Fabián, S.; López-Roa, R.I.; Flores-Gutiérrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015, 15, 401630. [Google Scholar] [CrossRef]
- You, S.; Nakanishi, E.; Kuwata, H.; Chen, J.; Nakasone, Y.; He, X.; He, J.; Liu, X.; Zhang, S.; Zhang, B.; et al. Inhibitory effects and molecular mechanisms of garlic organosulfur compounds on the production of inflammatory mediators. Mol. Nutr. Food Res. 2013, 57, 2049–2060. [Google Scholar] [CrossRef]
- Lee, S.K.; Park, Y.J.; Ko, M.J.; Wang, Z.; Lee, H.Y.; Choi, Y.W.; Bae, Y.S. A novel natural compound from garlic (Allium sativum L.) with therapeutic effects against experimental polymicrobial sepsis. Biochem. Biophys. Res. Commun. 2015, 464, 774–779. [Google Scholar] [CrossRef]
- Bushra, R.; Sial, A.A.; Rizvi, M.; Shafiq, Y.; Aslam, N.; Bano, N. Report: Sensitivity Pattern of Ceftriaxone against different Clinical Isolates. Pak. J. Pharm. Sci. 2016, 29, 249–253. [Google Scholar]
- Wang, J.; Tian, F.; Wang, P.; Zheng, H.; Zhang, Y.; Tian, H.; Zhang, L.; Gao, X.; Wang, X. Gut Microbiota as a Modulator of Paneth Cells During Parenteral Nutrition in Mice. J. Parenter. Enteral Nutr. 2018, 42, 1280–1287. [Google Scholar] [CrossRef]
- Vaishnava, S.; Yamamoto, M.; Severson, K.M.; Ruhn, K.A.; Yu, X.; Koren, O.; Ley, R.; Wakeland, E.K.; Hooper, L.V. The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science 2011, 334, 255–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound |
Concentration (μg/mg) | Compound |
Concentration (μg/mg) |
---|---|---|---|
Dimethyl thiosulfinate | 18.30 | Se | 9.37 |
Allylmethyl+Methyl-allyl | 4.58 | B | 89.45 |
Propyl-methyl+Methyl-propylthiosulfinate | 3.39 | Zn | 10.60 |
Diallyl thiosulfinate (allicin) | 5.62 | Cd | 9.48 |
Allyl-1-propenyl thiosulfinate | 31.02 | P | 1188.87 |
1-propenyl-allyl+allyl-propyl thiosulfinate | 1.76 | Ca | 159.11 |
Propyl-allyl thiosulfinate | 1.59 | K | 3974.85 |
Di-propyl thiosulfinate | 1.65 | Mg | 188.41 |
Methyl allyl sulfide | 3.58 | Cu | 298.16 |
Methyl allyl disulfide | 4.73 | Fe | 95.84 |
Dimethyl tetrasulfide | 6.62 | Cr | 26.37 |
Di-allyl trisulfide | 0.74 | Si | 3665.76 |
Di-methyl pentasulfide | 1.63 | Mn | 1.18 |
Prostaglandin E1 | 4.83 | Na | 102.41 |
(E,Z)-Ajoene | 0.07 | Co | Non-detected |
Inulin | 0.10 | Hg | Non-detected |
Vitamin E (α-tocopherol) | 3.07 | Al, Ni | Non-detected |
T1 | |||
---|---|---|---|
Variable, n/nt (%) | CEF | CEF + TASE | p-Value |
Nasal secretions 1 | 8/8 (100) | 7/9 (78) | 0.471 |
Ocular secretions 1 | 7/8 (88) | 7/9 (78) | 0.600 |
Whiskers separation 1 | 2/8 (25) | 6/9 (67) | 0.153 |
Lack of grooming 1 | 8/8 (100) | 6/9 (67) | 0.206 |
Piloerection 1 | 8/8 (100) | 8/9 (89) | 0.999 |
Hypoactivity 1 | 8/8 (100) | 9/9 (100) | - |
Diarrhea 1 | 2/8 (25) | 0/9 (0) | 0.206 |
T2 | |||
Variable, n/nt (%) | CEF | CEF + TASE | p-Value |
Nasal secretions 2 | 7/8 (88) | 6/9 (67) | 0.576 |
Ocular secretions 2 | 6/8 (75) | 5/9 (56) | 0.620 |
Whiskers separation 2 | 2/8 (25) | 7/9 (78) | 0.057 |
Lack of grooming 2 | 8/8 (100) | 6/9 (67) | 0.206 |
Piloerection 2 | 7/8 (88) | 5/9 (56) | 0.294 |
Hypoactivity 2 | 6/8 (75) | 4/9 (44) | 0.335 |
Diarrhea 2 | 2/8 (25) | 0/9 (0) | 0.206 |
T3 | |||
Variable, n/nt (%) | CEF | CEF + TASE | p-Value |
Nasal secretions 3 | 6/8 (75) | 3/9 (33) | 0.153 |
Ocular secretions 3 | 5/8 (63) | 1/9 (11) | 0.05 * |
Whiskers separation 3 | 6/8 (75) | 2/9 (22) | 0.05 * |
Lack of grooming 3 | 0/8 (0) | 0/9 (0) | - |
Piloerection 3 | 5/8 (63) | 2/9 (22) | 0.153 |
Hypoactivity 3 | 5/8 (63) | 1/9 (11) | 0.05 * |
Diarrhea 3 | 1/8 (13) | 0/9 (0) | 0.471 |
RESULTS OF MICROBIOLOGIC STUDIES | |||||
---|---|---|---|---|---|
Number of Rats | Blood Cultures | Peritoneal Liquid Culture | Antibiogram (Sensitive to Ampicilin, Vancomycin, Teicoplanin) | ||
Control (Group I) | 3 | Positive E. coli ATCC 25922 | Positive E. coli ATCC 25922 | Multisensitive | |
Ceftriaxone (Group II) | 8 | 6 | Enterococcus faecalis | 2–E. faecalis | Sensitive |
4–Negative | |||||
2 | Positive E. coli ATCC 25922 | Negative | Multisensitive | ||
1 | Exitus before 24 h (no samples collected) | - | - | ||
Ceftriaxone + TASE * (Group III) | 8 | E. faecalis | 1–E. faecalis | Sensitive | |
7–Negative | |||||
1 | Negative | Negative | - |
Variable, n/nt (%) | CEF | CEF + TASE | p-Value |
---|---|---|---|
Liver—hepatic congestion | 8/9 (89) | 8/9 (89) | - |
Liver—sinusoidal PMN leukocytes | 4/9 (44) | 2/9 (22) | 0.62 |
Liver—serosa PMN leukocytes | 3/9 (33) | 1/9 (11) | 0.576 |
Liver—bacteria | 2/9 (22) | 0/9 (0) | 0.471 |
Liver—perinuclear vacuolization | 6/9 (33) | 7/9 (78) | 0.599 |
Peritoneum—PMN leukocytes | 3/9 (33) | 2/9 (22) | 0.999 |
Peritoneum—bacteria | 3/9 (33) | 1/9 (11) | 0.576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redondo-Calvo, F.J.; Montenegro, O.; Padilla-Valverde, D.; Villarejo, P.; Baladrón, V.; Bejarano-Ramírez, N.; Galán, R.; Gómez, L.A.; Villasanti, N.; Illescas, S.; et al. Thiosulfinate-Enriched Allium sativum Extract as an Adjunct to Antibiotic Treatment of Sepsis in a Rat Peritonitis Model. Appl. Sci. 2021, 11, 4760. https://doi.org/10.3390/app11114760
Redondo-Calvo FJ, Montenegro O, Padilla-Valverde D, Villarejo P, Baladrón V, Bejarano-Ramírez N, Galán R, Gómez LA, Villasanti N, Illescas S, et al. Thiosulfinate-Enriched Allium sativum Extract as an Adjunct to Antibiotic Treatment of Sepsis in a Rat Peritonitis Model. Applied Sciences. 2021; 11(11):4760. https://doi.org/10.3390/app11114760
Chicago/Turabian StyleRedondo-Calvo, Francisco Javier, Omar Montenegro, David Padilla-Valverde, Pedro Villarejo, Víctor Baladrón, Natalia Bejarano-Ramírez, Rocío Galán, Luis Antonio Gómez, Natalia Villasanti, Soledad Illescas, and et al. 2021. "Thiosulfinate-Enriched Allium sativum Extract as an Adjunct to Antibiotic Treatment of Sepsis in a Rat Peritonitis Model" Applied Sciences 11, no. 11: 4760. https://doi.org/10.3390/app11114760
APA StyleRedondo-Calvo, F. J., Montenegro, O., Padilla-Valverde, D., Villarejo, P., Baladrón, V., Bejarano-Ramírez, N., Galán, R., Gómez, L. A., Villasanti, N., Illescas, S., Morales, V., Medina-Prado, L., Muñoz-Rodríguez, J. R., & Pérez-Ortiz, J. M. (2021). Thiosulfinate-Enriched Allium sativum Extract as an Adjunct to Antibiotic Treatment of Sepsis in a Rat Peritonitis Model. Applied Sciences, 11(11), 4760. https://doi.org/10.3390/app11114760