Cu&Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cu@Si Core–Shell Nanowire Thin Film (CSNWF) Preparation
2.2. Characterization and Electrochemical Measurement
3. Results and Discussion
3.1. Characterization of Cu@Si CSNWFs
3.2. Electrochemical Performance of Cu@Si CSNWFs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, A.; Zhong, H.; Zhou, X.; Tang, J.; Jia, M.; Cheng, F.; Wang, Q.; Yang, J. Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries. Appl. Surf. Sci. 2019, 470, 454–461. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Li, Y.; Yan, K.; Lee, H.-W.; Lu, Z.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029. [Google Scholar] [CrossRef]
- Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047. [Google Scholar] [CrossRef]
- Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2014, 4, 1300882. [Google Scholar] [CrossRef]
- Ashuri, M.; He, Q.; Shaw, L.L. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter. Nanoscale 2016, 8, 74–103. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2007, 3, 31–35. [Google Scholar] [CrossRef]
- Wu, H.; Du, N.; Zhang, H.; Yang, D. Voltage-controlled synthesis of Cu–Li2O@Si core–shell nanorod arrays as high-performance anodes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 20510–20514. [Google Scholar] [CrossRef]
- Cui, L.F.; Ruffo, R.; Chan, C.K.; Peng, H.; Cui, Y. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Lett. 2009, 9, 491–495. [Google Scholar] [CrossRef]
- Li, J.; Yue, C.; Yu, Y.; Chui, Y.-S.; Yin, J.; Wu, Z.; Wang, C.; Zang, Y.; Lin, W.; Li, J.; et al. Si/Ge core–shell nanoarrays as the anode material for 3D lithium ion batteries. J. Mater. Chem. A 2013, 1, 14344–14349. [Google Scholar] [CrossRef]
- Fukata, N.; Mitome, M.; Sekiguchi, T.; Bando, Y.; Kirkham, M.; Hong, J.-I.; Wang, Z.L.; Snyder, R.L. Characterization of Impurity Doping and Stress in Si/Ge and Ge/Si Core–Shell Nanowires. ACS Nano 2012, 6, 8887–8895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Du, Z.; Lin, R.; Jiang, T.; Liu, G.; Wu, X.; Weng, D. Nickel Nanocone-Array Supported Silicon Anode for High-Performance Lithium-Ion Batteries. Adv. Mater. 2010, 22, 5378–5382. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.F.; Yang, Y.; Hsu, C.M.; Cui, Y. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Lett. 2009, 9, 3370–3374. [Google Scholar] [CrossRef] [PubMed]
- Hamed, H.; Xingcheng, X.; Huajian, G. Critical film thickness for fracture in thin-film electrodes on substrates in the presence of interfacial sliding. Modell. Simul. Mater. Sci. Eng. 2013, 21, 074008. [Google Scholar]
- Kasavajjula, U.; Wang, C.; Appleby, A.J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039. [Google Scholar] [CrossRef]
- Guo, S.; Li, H.; Bai, H.; Tao, Z.; Chen, J. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. J. Power Sources 2014, 248, 1141–1148. [Google Scholar] [CrossRef]
- Salah, M.; Murphy, P.; Hall, C.; Francis, C.; Kerr, R.; Fabretto, M. Pure silicon thin-film anodes for lithium-ion batteries: A review. J. Power Sources 2019, 414, 48–67. [Google Scholar] [CrossRef]
- Qu, J.; Li, H.; Henry, J.J.; Martha, S.K.; Dudney, N.J.; Xu, H.; Chi, M.; Lance, M.J.; Mahurin, S.M.; Besmann, T.M.; et al. Self-aligned Cu–Si core–shell nanowire array as a high-performance anode for Li-ion batteries. J. Power Sources 2012, 198, 312–317. [Google Scholar] [CrossRef]
- Jung, H.; Park, M.; Yoon, Y.-G.; Kim, G.-B.; Joo, S.-K. Amorphous silicon anode for lithium-ion rechargeable batteries. J. Power Sources 2003, 115, 346–351. [Google Scholar] [CrossRef]
- Han, S.; Chen, H.-Y.; Chu, Y.-B.; Shih, H.C. Phase transformations in copper oxide nanowires. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2005, 23, 2557. [Google Scholar] [CrossRef]
- Thompson, R.D.; Tu, K.N. Low temperature gettering of Cu, Ag, and Au across a wafer of Si by Al. Appl. Phys. Lett. 1982, 41, 440–442. [Google Scholar] [CrossRef]
- Cros, A.; Aboelfotoh, M.O.; Tu, K.N. Formation, oxidation, electronic, and electrical properties of copper silicides. J. Appl. Phys. 1990, 67, 3328–3336. [Google Scholar] [CrossRef]
- Yuan, F.-W.; Wang, C.-Y.; Li, G.-A.; Chang, S.-H.; Chu, L.-W.; Chen, L.-J.; Tuan, H.-Y. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers. Nanoscale 2013, 5, 9875–9881. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kim, H.; Sohn, H.-J. Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries. Electrochem. Commun. 2005, 7, 557–561. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, Y.; Wang, L.; Yang, Y. Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J. Power Sources 2011, 196, 6657–6662. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, H.; Yin, C.; Qiu, W. A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries. Mater. Sci. Eng. B 2006, 131, 173–176. [Google Scholar] [CrossRef]
- Aboelfotoh, M.O.; Krusin-Elbaum, L. Electrical transport in thin films of copper silicide. J. Appl. Phys. 1991, 70, 3382–3384. [Google Scholar] [CrossRef]
- Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 2004, 136, 303–306. [Google Scholar] [CrossRef]
- Lee, K.-L.; Jung, J.-Y.; Lee, S.-W.; Moon, H.-S.; Park, J.-W. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 2004, 129, 270–274. [Google Scholar] [CrossRef]
- Kim, I.-C.; Byun, D.; Lee, J.K. Electrochemical characteristics of silicon-metals coated graphites for anode materials of lithium secondary batteries. J. Electroceramics 2006, 17, 661–665. [Google Scholar] [CrossRef]
- NuLi, Y.; Wang, B.; Yang, J.; Yuan, X.; Ma, Z. Cu5Si&Si/C Composites for Lithium-Ion Battery Anodes. In Proceedings of the 2004 Meeting of the International Battery Association, Graz, Austria, 18–22 April 2004. [Google Scholar]
- Zhao, W.; Du, N.; Xiao, C.; Wu, H.; Zhang, H.; Yang, D. Large-scale synthesis of Ag–Si core–shell nanowall arrays as high-performance anode materials of Li-ion batteries. J. Mater. Chem. A 2014, 2, 13949–13954. [Google Scholar] [CrossRef]
- Chen, L.B.; Xie, J.Y.; Yu, H.C.; Wang, T.H. An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 2009, 39, 1157–1162. [Google Scholar] [CrossRef]
- Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J.S. Structured Silicon Anodes for Lithium Battery Applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79. [Google Scholar] [CrossRef]
- Ruffo, R.; Hong, S.S.; Chan, C.K.; Huggins, R.A.; Cui, Y. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes. J. Phys. Chem. C 2009, 113, 11390–11398. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Zhang, S.; Qiu, X.; Zhu, W.; Chen, L. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem. Commun. 2007, 9, 930–934. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, L.; Xie, Z.; Yang, J. Cu&Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries. Appl. Sci. 2021, 11, 4521. https://doi.org/10.3390/app11104521
Zhang L, Zhang L, Xie Z, Yang J. Cu&Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries. Applied Sciences. 2021; 11(10):4521. https://doi.org/10.3390/app11104521
Chicago/Turabian StyleZhang, Lifeng, Linchao Zhang, Zhuoming Xie, and Junfeng Yang. 2021. "Cu&Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries" Applied Sciences 11, no. 10: 4521. https://doi.org/10.3390/app11104521
APA StyleZhang, L., Zhang, L., Xie, Z., & Yang, J. (2021). Cu&Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries. Applied Sciences, 11(10), 4521. https://doi.org/10.3390/app11104521