Development of an Automatic Functional Movement Screening System with Inertial Measurement Unit Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Equipment and Instruments
2.3. FMS
2.4. Data Acquisition and Preprocessing
2.5. Feature Selection and Modeling
2.6. Model Evaluation
Recall2 = T2/(T2 + F1 + F6)
Recall3 = T3/(T3 + F2 + F3)
Precision2 = T2/(T2 + F4 + F3)
Precision3 = T3/(T3 + F5 + F6)
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. In-Line Lunge
4.2. Deep Squat and Trunk Stability Push Up
4.3. Hurdle Step and Active Straight Leg Raise
4.4. Rotary Stability
4.5. Consistency between Automatic and Manual Scoring
4.6. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimoura, K.; Nakayama, Y.; Tashiro, Y.; Hotta, T.; Suzuki, Y.; Tasaka, S.; Matsushita, T.; Matsubara, K.; Kawagoe, M.; Sonoda, T.; et al. Association Between Functional Movement Screen Scores and Injuries in Male College Basketball Players. J. Sport Rehabil. 2019, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bonazza, N.A.; Smuin, D.; Onks, C.A.; Silvis, M.L.; Dhawan, A. Reliability, validity, and injury predictive value of the functional movement screen: A systematic review and meta-analysis. Am. J. Sports Med. 2017, 45, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Bunn, P.; Rodrigues, A.I.; da Silva, E.B. The association between the functional movement screen outcome and the incidence of musculoskeletal injuries: A systematic review with meta-analysis. Phys. Ther. Sport 2019, 35, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Garrison, M.; Westrick, R.; Johnson, M.R.; Benenson, J. Association between the functional movement screen and injury development in college athletes. Int. J. Sports Phys. Ther. 2015, 10, 21. [Google Scholar] [PubMed]
- Shultz, R.; Anderson, S.C.; Matheson, G.O.; Marcello, B.; Besier, T. Test-retest and interrater reliability of the functional movement screen. J. Athl. Train. 2013, 48, 331–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caramia, C.; Torricelli, D.; Schmid, M.; Muñoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based Classification of Parkinson’s Disease from Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE J. Biomed. Health Inform. 2018, 22, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, F.; Held, J.P.; Lambercy, O.; Starkey, M.L.; Curt, A.; Höver, R.; Gassert, R.; Luft, A.R.; Gonzenbach, R.R. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. J. Neuroeng. Rehabil. 2016, 13, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, D.F.; O’Reilly, M.A.; Ward, T.E.; Delahunt, E.; Caulfield, B. Technology in rehabilitation: Evaluating the single leg squat exercise with wearable inertial measurement units. Methods Inf. Med. 2017, 56, 88–94. [Google Scholar] [PubMed] [Green Version]
- Crema, C.; Depari, A.; Flammini, A.; Sisinni, E.; Haslwanter, T.; Salzmann, S. IMU-based solution for automatic detection and classification of exercises in the fitness scenario. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–6. [Google Scholar]
- Buckley, C.; O’Reilly, M.A.; Whelan, D.; Farrell, A.V.; Clark, L.; Longo, V.; Gilchrist, M.D.; Caulfield, B. Binary classification of running fatigue using a single inertial measurement unit. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 197–201. [Google Scholar]
- Chen, W.-H.; Lee, Y.-S.; Yang, C.-J.; Chang, S.-Y.; Shih, Y.; Sui, J.-D.; Chang, T.S.; Shiang, T.Y. Determining motions with an IMU during level walking and slope and stair walking. J. Sports Sci. 2020, 38, 62–69. [Google Scholar] [CrossRef]
- Rindal, O.; Seeberg, T.; Tjønnås, J.; Haugnes, P.; Sandbakk, Ø. Automatic classification of sub-techniques in classical cross-country skiing using a machine learning algorithm on micro-sensor data. Sensors 2018, 18, 75. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, D.; Cant, O.; Connolly, M.; Reid, M. Monitoring hitting load in tennis using inertial sensors and machine learning. Int. J. Sports Physiol. Perform. 2017, 12, 1212–1217. [Google Scholar] [CrossRef]
- Whiteside, D.; Deneweth, J.M.; Pohorence, M.A.; Sandoval, B.; Russell, J.R.; McLean, S.G.; Zernicke, R.F.; Goulet, G.C. Grading the functional movement screen: A comparison of manual (real-time) and objective methods. J. Strength Cond. Res. 2014, 30, 924–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philp, F.; Blana, D.; Chadwick, E.K.; Stewart, C.; Stapleton, C.; Major, K.; Pandyan, A.D. Study of the measurement and predictive validity of the functional movement screen. BMJ Open Sport Exerc. Med. 2018, 4, e000357. [Google Scholar] [CrossRef] [Green Version]
- Kisner, C.; Colby, L.A.; Borstad, J. Therapeutic Exercise: Foundations and Techniques, 7th ed.; F.A. Davis: Philadelphia, PA, USA, 2017; p. 82. [Google Scholar]
- Larose, D.T. An introduction to data mining. In Discovering Knowledge in Data; John Wiley & Sons Publication: Hoboken, NJ, USA, 2005; pp. 1–25. [Google Scholar]
- Fayyad, U.M.; Piatetsky-Shapiro, G.; Smyth, P.; Uthurusamy, R. Advances in Knowledge Discovery and Data Mining; AAAI Press: Menlo Park, CA, USA, 1996; Volume 21. [Google Scholar]
- Xiao, F.; Wang, Y.; He, L.; Wang, H.; Li, W.; Liu, Z. Motion estimation from surface electromyogram using adaboost regression and average feature values. IEEE Access 2019, 7, 13121–13134. [Google Scholar] [CrossRef]
- Haider, F.; Salim, F.A.; Postma, D.B.; Delden, R.V.; Reidsma, D.; van Beijnum, B.-J.; Luz, S. A Super-Bagging Method for Volleyball Action Recognition Using Wearable Sensors. Multimodal Technol. Interact. 2020, 4, 33. [Google Scholar] [CrossRef]
- Pustina, D.; Coslett, H.B.; Ungar, L.; Faseyitan, O.K.; Medaglia, J.D.; Avants, B.; Schwartz, M.F. Enhanced estimations of post-stroke aphasia severity using stacked multimodal predictions. Hum. Brain Mapp. 2017, 38, 5603–5615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BoostFix User Manual. Available online: https://boostfix.compal-health.com/user_manual.pdf (accessed on 13 December 2019).
- Skotnicka, M.; Karpowicz, K.; Bartkowiak, S.; Strzelczyk, R. The Impact of the Corrective and Stability Exercises Program on the Quality of Basic Movement Patterns among Dance Students. Trends Sport. Sci. 2017, 1, 31–38. [Google Scholar]
- Jensen, U.; Weilbrenner, F.; Rott, F.; Eskofier, B. Sensor-based mobile functional movement screening. In Proceedings of the International Conference on Wireless Mobile Communication and Healthcare, Paris, France, 21–23 November 2012; pp. 215–223. [Google Scholar]
Segment | 31 Joint Motion | 20 Joint Motion | Parameter Abbreviations |
---|---|---|---|
Head | Head flexion | Head flexion | HF |
Head lateral flexion | Head lateral flexion | HLF | |
Head rotation | Head rotation | HR | |
Trunk | Trunk flexion | Trunk flexion | TF |
Trunk lateral flexion | Trunk lateral flexion | TLF | |
Trunk rotation | Trunk rotation | TR | |
Pelvic | Pelvic tilt | Pelvic tilt | PT |
Pelvic lateral flexion | Pelvic lateral flexion | PLF | |
Pelvic rotation | Pelvic rotation | PR | |
Scoring Side- Shoulder | Scoring shoulder flexion | Scoring shoulder flexion | S-SF |
Scoring shoulder abduction | Scoring shoulder abduction | S-SAB | |
Scoring shoulder rotation | Scoring shoulder rotation | S-SR | |
Scoring shoulder hori. Internal | Scoring shoulder hori. Internal | S-SHR | |
Scoring shoulder hori. Abduction | Scoring shoulder hori. Abduction | S-SHAB | |
Non Scoring Side- Shoulder | Non-Scoring shoulder flexion | NS-SF | |
Non-Scoring shoulder abduction | NS-SAB | ||
Non-Scoring shoulder rotation | NS-SR | ||
Non-Scoring shoulder hori. Internal | NS-SHR | ||
Non-Scoring shoulder hori. Abduction | NS-SHAB | ||
Scoring Side- Thigh | Scoring thigh flexion | Scoring thigh flexion | S-ThF |
Scoring thigh abduction | Scoring thigh abduction | S-ThAB | |
Scoring thigh rotation | Scoring thigh rotation | S-ThR | |
Non Scoring Side- Thigh | Non-Scoring thigh flexion | NS-ThF | |
Non-Scoring thigh abduction | NS-ThAB | ||
Non-Scoring thigh rotation | NS-ThR | ||
Scoring Side- Knee | Scoring knee flexion | Scoring knee flexion | S-KF |
Non Scoring Side- Knee | Non-Scoring knee flexion | NS-KF | |
Scoring Side- Foot | Scoring foot plantar flexion | Scoring foot plantar flexion | S-FPF |
Scoring foot eversion | Scoring foot eversion | S-FE | |
Non Scoring Side- Foot | Non-Scoring foot plantar flexion | NS-FPF | |
Non-Scoring foot eversion | NS-FE |
Confusion Matrix | Actual Class | |||
---|---|---|---|---|
Y1 | Y2 | Y3 | ||
Predicted Class | Y1 | T1 | F1 | F2 |
Y2 | F4 | T2 | F3 | |
Y3 | F5 | F6 | T3 |
Manual Scoring | Automatic Scoring | |||||||
---|---|---|---|---|---|---|---|---|
3 | 2 | 1 | Average | 3 | 2 | 1 | Average | |
Deep Squat | N = 20 (28.57%) | N = 18 (25.71%) | N = 32 (45.71%) | 1.83 (0.85) | N = 19 (27.14%) | N = 17 (24.29%) | N = 34 (48.57%) | 1.79 (0.85) |
Hurdle Step | N = 5 (7.14%) | N = 47 (67.14%) | N = 18 (25.71%) | 1.81 (0.55) | N = 4 (5.71%) | N = 57 (81.43%) | N = 9 (12.86%) | 1.93 (0.43) |
In-line Lunge | N = 9 (12.86%) | N = 54 (77.14%) | N = 7 (10.00%) | 2.03 (0.48) | N = 2 (2.86%) | N = 63 (90.00%) | N = 5 (7.14%) | 1.96 (0.32) |
Active Straight Leg Raise | N = 34 (48.57%) | N = 25 (35.71%) | N = 11 (15.71%) | 2.33 (0.74) | N = 39 (55.71%) | N = 23 (32.86%) | N = 8 (11.43%) | 2.44 (0.69) |
Push up | N = 24 (34.29%) | N = 8 (11.43%) | N = 38 (54.29%) | 1.80 (0.93) | N = 27 (38.57%) | N = 6 (8.57%) | N = 37 (52.86%) | 1.86 (0.95) |
Rotary Stability | - | N = 43 (61.43%) | N = 27 (38.57%) | 1.61 (0.49) | - | N = 48 (68.57%) | N = 22 (31.43%) | 1.69 (0.47) |
Score | |||||
---|---|---|---|---|---|
Items | Range of Motion Variables | Nagelkerke R2 | 3 | 2 | 1 |
Deep squat | S-SHAB | 0.825 | 13.81 (5.82) | 20.84 (8.02) | 21.36 (7.23) |
PT | 23.87 (6.30) | 26.51 (9.28) | 29.81 (12.68) | ||
S-ThF | 118.50 (22.38) | 118.08 (17.32) | 101.34 (20.07) | ||
TR | 5.83 (1.46) | 7.27 (2.52) | 8.56 (3.68) | ||
Hurdle step | HR | 0.189 | 12.60 (6.19) | 12.85 (9.30) | 21.61 (18.16) |
In-line lunge | TF | 0.441 | 11.91 (5.27) | 16.96 (8.15) | 41.62 (12.76) |
Active straight leg raise | S-ThF | 0.786 | 96.76 (14.05) | 89.48 (16.78) | 69.91 (16.34) |
PT | 18.89 (25.66) | 26.10 (24.39) | 34.44 (31.13) | ||
Push up | TF | 0.401 | 21.62(7.10) | 22.58(7.91) | 34.53(12.83) |
S-SR | 88.73(21.22) | 81.06(36.00) | 63.37(33.97) | ||
Rotary stability | NS-SR | 0.343 | - | 66.37 (45.54) | 90.66 (66.37) |
S-SF | - | 81.20 (31.24) | 99.06 (29.94) | ||
S-ThF | - | 36.16 (19.58) | 27.74 (9.22) |
Parameters | Accuracy | Fscore1 | Fscore2 | Fscore3 | Kappa | Level of Agreement | |
---|---|---|---|---|---|---|---|
Deep Squat | 21 | 0.87 | 0.91 | 0.80 | 0.87 | 0.80 | Good |
4 | 0.71 | 0.86 | 0.33 | 0.75 | 0.56 | Moderate | |
Hurdle Step | 31 | 0.66 | 0.30 | 0.79 | 0.22 | 0.18 | Poor |
1 | 0.61 | 0.33 | 0.68 | 0 | 0.06 | Poor | |
In-line Lunge | 31 | 0.81 | 0.67 | 0.89 | 0.18 | 0.37 | Fair |
1 | 0.79 | 0.77 | 0.87 | 0.14 | 0.35 | Fair | |
Active Straight Leg Raise | 31 | 0.66 | 0.47 | 0.57 | 0.76 | 0.42 | Moderate |
2 | 0.57 | 0.40 | 0.60 | 0.62 | 0.33 | Fair | |
Push up | 21 | 0.91 | 0.96 | 0.71 | 0.90 | 0.85 | Very Good |
2 | 0.71 | 0.83 | 0.20 | 0.64 | 0.47 | Moderate | |
Rotary Stability | 31 | 0.70 | 0.63 | - | - | 0.34 | Fair |
3 | 0.64 | 0.65 | - | - | 0.22 | Fair |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.-L.; Lee, M.-H.; Hsu, H.-T.; Ho, W.-H.; Liang, J.-M. Development of an Automatic Functional Movement Screening System with Inertial Measurement Unit Sensors. Appl. Sci. 2021, 11, 96. https://doi.org/10.3390/app11010096
Wu W-L, Lee M-H, Hsu H-T, Ho W-H, Liang J-M. Development of an Automatic Functional Movement Screening System with Inertial Measurement Unit Sensors. Applied Sciences. 2021; 11(1):96. https://doi.org/10.3390/app11010096
Chicago/Turabian StyleWu, Wen-Lan, Meng-Hua Lee, Hsiu-Tao Hsu, Wen-Hsien Ho, and Jing-Min Liang. 2021. "Development of an Automatic Functional Movement Screening System with Inertial Measurement Unit Sensors" Applied Sciences 11, no. 1: 96. https://doi.org/10.3390/app11010096
APA StyleWu, W.-L., Lee, M.-H., Hsu, H.-T., Ho, W.-H., & Liang, J.-M. (2021). Development of an Automatic Functional Movement Screening System with Inertial Measurement Unit Sensors. Applied Sciences, 11(1), 96. https://doi.org/10.3390/app11010096