Ghost Imaging by a Proportional Parameter to Filter Bucket Data
Abstract
1. Introduction
2. Experimental Setup and Principle
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittman, T.B.; Shih, Y.H.; Strekalov, D.V.; Sergienko, A.V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 1995, 52, 3429–3432. [Google Scholar]
- Strekalov, D.V.; Sergienko, A.V.; Klyshko, D.N.; Shih, Y.H. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 1995, 74, 3600–3603. [Google Scholar] [PubMed]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 2002, 89, 113601. [Google Scholar] [PubMed]
- Erkmen, B.; Shapiro, J. Ghost imaging: From quantum to classical to computational. Adv. Opt. Photon. 2010, 2, 405–450. [Google Scholar]
- Padgett, M.J.; Boyd, R.W. An introduction to ghost imaging: Quantum and classical. Philos. Trans. Roy. Soc. A 2017, 375, 20160233. [Google Scholar]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Phys. Rev. Lett. 2004, 93, 093602. [Google Scholar]
- Pelliccia, D.; Rack, A.; Scheel, M.; Cantelli, V.; Paganin, D.M. Experimental X-ray ghost imaging. Phys. Rev. Lett. 2016, 117, 113902. [Google Scholar]
- Cheng, J.; Lin, J. Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere. Phys. Rev. A 2013, 87, 043810. [Google Scholar]
- Zhang, P.; Gong, W.; Shen, X.; Han, S. Correlated imaging through atmospheric turbulence. Phys. Rev. A 2010, 82, 033817. [Google Scholar]
- Zhang, Y.; Li, W.; Wu, H.; Chen, Y.; Su, X.; Xiao, Y.; Wang, Z.; Gu, Y. High-visibility underwater ghost imaging in low illumination. Opt. Commun. 2019, 44, 45–48. [Google Scholar]
- Erkmen, B. Computational ghost imaging for remote sensing. J. Opt. Soc. Am. A 2012, 29, 782–789. [Google Scholar]
- Gong, W.; Zhao, C.; Yu, H.; Chen, M.; Xu, W.; Han, S. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep. 2016, 6, 26133. [Google Scholar] [PubMed]
- Moreau, P.A.; Toninelli, E.; Gregory, T.; Padgett, M.J. Ghost imaging using optical correlations. Laser Photonic Rev. 2018, 12, 1700143. [Google Scholar]
- Ferri, F.; Magatti, D.; Lugiato, L.A.; Gatti, A. Differential ghost imaging. Phys. Rev. Lett. 2010, 104, 253603. [Google Scholar] [PubMed]
- Sun, B.; Welsh, S.; Edgar, M.; Shapiro, J.; Padgett, M. Normalized ghost imaging. Opt. Express. 2012, 20, 16892–16901. [Google Scholar]
- Zhang, C.; Guo, S.; Cao, J.; Guan, J.; Gao, F. Object reconstitution using pseudo-inverse for ghost imaging. Opt. Express. 2014, 22, 30063–30073. [Google Scholar]
- Gong, W.L. High-resolution pseudo-inverse ghost imaging. Photonic Res. 2015, 3, 234–237. [Google Scholar]
- Yang, C.; Wang, C.; Guan, J.; Zhang, C.; Guo, S.; Gong, W.; Gao, F. Scalar-matrix-structured ghost imaging. Photon. Res. 2016, 4, 281–285. [Google Scholar]
- Lv, X.; Guo, S.; Wang, C.; Yang, C.; Zhang, H.; Song, J.; Gong, W.; Gao, F. Experimental investigation of iterative pseudoinverse ghost imaging. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar]
- Katz, O.; Bromberg, Y.; Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 2009, 95, 131110. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, C.; Tian, T.; Liu, D.; Song, L. High-quality compressive ghost imaging. Opt. Commun. 2018, 412, 60–65. [Google Scholar] [CrossRef]
- Yue, C.; Chen, P.; Lv, X.; Wang, C.; Guo, S.; Song, J.; Gong, W.; Gao, F. Object Reconstruction Using the Binomial Theorem for Ghost Imaging. IEEE Photonics J. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Luo, K.; Huang, B.; Zheng, W.; Wu, L. Nonlocal imaging by conditional averaging of random reference measurements. Chin. Phys. Lett. 2012, 29, 074216. [Google Scholar] [CrossRef]
- Sun, M.; Li, M.; Wu, L. Nonlocal imaging of a reflective object using positive and negative correlations. Appl. Opt. 2015, 54, 7494–7499. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Y.; Liu, X.; Yao, X.; Luo, K.; Fan, H.; Wu, L. A double-threshold technique for fast time-correspondence imaging. Appl. Phys. Lett. 2013, 103, 211119. [Google Scholar] [CrossRef]
- Shapiro, J.H. Computational ghost imaging. Phys. Rev. A 2008, 78, 061802. [Google Scholar] [CrossRef]
- Bian, L.; Suo, J.; Dai, Q.; Chen, F. Experimental comparison of single-pixel imaging algorithms. J. Opt. Soc. Am. A 2018, 35, 78–87. [Google Scholar] [CrossRef]
- Komuro, K.; Nomura, T.; Barbastathis, G. Deep ghost phase imaging. Appl. Opt. 2020, 59, 3376–3382. [Google Scholar] [CrossRef]
- Wu, H.; Wang, R.; Zhao, G.; Xiao, H.; Liang, J.; Wang, D.; Tian, X.; Cheng, L.; Zhang, X. Deep-learning denoising computational ghost imaging. Opt. Lasers Eng. 2020, 134, 106183. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, M.; Gong, X.; Guan, J.; Song, J.; Song, Z.; Li, X.; Guo, S.; Chen, J.; Yu, S.; Gao, F. Ghost Imaging by a Proportional Parameter to Filter Bucket Data. Appl. Sci. 2021, 11, 227. https://doi.org/10.3390/app11010227
Tao M, Gong X, Guan J, Song J, Song Z, Li X, Guo S, Chen J, Yu S, Gao F. Ghost Imaging by a Proportional Parameter to Filter Bucket Data. Applied Sciences. 2021; 11(1):227. https://doi.org/10.3390/app11010227
Chicago/Turabian StyleTao, Min, Xiaobin Gong, Jian Guan, Junfeng Song, Zhixin Song, Xueyan Li, Shuxu Guo, Jian Chen, Siyao Yu, and Fengli Gao. 2021. "Ghost Imaging by a Proportional Parameter to Filter Bucket Data" Applied Sciences 11, no. 1: 227. https://doi.org/10.3390/app11010227
APA StyleTao, M., Gong, X., Guan, J., Song, J., Song, Z., Li, X., Guo, S., Chen, J., Yu, S., & Gao, F. (2021). Ghost Imaging by a Proportional Parameter to Filter Bucket Data. Applied Sciences, 11(1), 227. https://doi.org/10.3390/app11010227