Low-Power Laser Graphitization of High Pressure—High Temperature Nanodiamond Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Muller, O.; Pichot, V.; Merlat, L.; Spitzer, D. Optical limiting properties of surface functionalized nanodiamonds probed by the Z-scan method. Sci. Rep. 2019, 9, 519. [Google Scholar] [CrossRef] [PubMed]
- Shvidchenko, A.V.; Eidelman, E.D.; Vul’, A.Y.; Kuznetsov, N.M.; Stolyarova, D.Y.; Belousov, S.I.; Chvalun, S.N. Colloids of detonation nanodiamond particles for advanced applications. Adv. Colloid Interface Sci. 2019, 268, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Shumilov, F.A.; Levitskii, V.S. Immobilization of Single Particles of Detonation Nanodiamonds in Langmuir-Blodgett Films Using Octadecylamine. J. Superhard Mater. 2019, 41, 412–420. [Google Scholar] [CrossRef]
- Dolmatov, V.Y. Detonation synthesis ultradispersed diamonds: Properties and applications. Russ. Chem. Rev. 2001, 70, 607–626. [Google Scholar] [CrossRef]
- Mermoux, M.; Crisci, A.; Petit, T.; Girard, H.A.; Arnault, J.-C. Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy. J. Phys. Chem. C 2014, 118, 23415–23425. [Google Scholar] [CrossRef]
- Shenderova, O.A.; McGuire, G.E. Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases 2015, 10, 030802. [Google Scholar] [CrossRef]
- Bundy, F.P.; Hall, H.T.; Strong, H.M.; Wentorfjun, R.H. Man-Made Diamonds. Nature 1955, 176, 51–55. [Google Scholar] [CrossRef]
- Walker, J. Optical absorption and luminescence in diamond. Rep. Prog. Phys. 1979, 42, 1605–1659. [Google Scholar] [CrossRef]
- Gruber, A. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science 1997, 276, 2012–2014. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.T. The characterisation of point defects in diamond by luminescence spectroscopy. Diam. Relat. Mater. 1992, 1, 457–469. [Google Scholar] [CrossRef]
- Nadolinny, V.A.; Yelisseyev, A.P. New paramagnetic centres containing nickel ions in diamond. Diam. Relat. Mater. 1994, 3, 17–21. [Google Scholar] [CrossRef]
- Collins, A.T.; Kanda, H.; Burns, R.C. The segregation of nickel-related optical centres in the octahedral growth sectors of synthetic diamond. Philos. Mag. B 1990, 61, 797–810. [Google Scholar] [CrossRef]
- Jelezko, F.; Tietz, C.; Gruber, A.; Popa, I.; Nizovtsev, A.; Kilin, S.; Wrachtrup, J. Spectroscopy of Single N-V Centers in Diamond. Single Mol. 2001, 2, 255–260. [Google Scholar] [CrossRef]
- Manson, N.B.; Harrison, J.P. Photo-ionization of the nitrogen-vacancy center in diamond. Diam. Relat. Mater. 2005, 14, 1705–1710. [Google Scholar] [CrossRef]
- Collins, A.T.; Spear, P.M. The 1.40 eV and 2.56 eV centres in synthetic diamond. J. Phys. C Solid State Phys. 1983, 16, 963–973. [Google Scholar] [CrossRef]
- Kupriyanov, I.; Gusev, V.; Borzdov, Y.; Kalinin, A.; Pal’yanov, Y. Photoluminescence study of annealed nickel- and nitrogen-containing synthetic diamond. Diam. Relat. Mater. 1999, 8, 1301–1309. [Google Scholar] [CrossRef]
- Collins, A.T. Spectroscopy of defects and transition metals in diamond. Diam. Relat. Mater. 2000, 9, 417–423. [Google Scholar] [CrossRef]
- Yelisseyev, A.; Babich, Y.; Nadolinny, V.; Fisher, D.; Feigelson, B. Spectroscopic study of HPHT synthetic diamonds, as grown at 1500 °C. Diam. Relat. Mater. 2002, 11, 22–37. [Google Scholar] [CrossRef]
- Lindblom, J.; Holsa, J.; Papunen, H.; Hakkanen, H. Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am. Mineral. 2005, 90, 428–440. [Google Scholar] [CrossRef]
- Rothschild, M.; Arnone, C.; Ehrlich, D.J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1986, 4, 310. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Kononenko, V.V.; Ralchenko, V.G.; Pimenov, S.M.; Konov, V.I. Laser Induced Nanoablation of Diamond Materials. Phys. Procedia 2011, 12, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Mildren, R.P.; Downes, J.E.; Brown, J.D.; Johnston, B.F.; Granados, E.; Spence, D.J.; Lehmann, A.; Weston, L.; Bramble, A. Characteristics of 2-photon ultraviolet laser etching of diamond. Opt. Mater. Express 2011, 1, 576. [Google Scholar] [CrossRef] [Green Version]
- Konov, V.I. Laser in micro and nanoprocessing of diamond materials. Laser Photon. Rev. 2012, 6, 739–766. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Kononenko, V.V.; Gololobov, V.M.; Konov, V.I. On the role of multiphoton light absorption in pulsed laser nanoablation of diamond. Quantum Electron. 2016, 46, 125–127. [Google Scholar] [CrossRef]
- Arutyunyan, N.R.; Komlenok, M.S.; Zavedeev, E.V.; Pimenov, S.M. Raman Spectroscopy of Amorphous Carbon Films Modified by Single-Pulse Irradiation of Nanosecond and Femtosecond Lasers. Phys. Status Solidi 2018, 255, 1700225. [Google Scholar] [CrossRef]
- Hora, H.; Miley, G.H.; Eliezer, S.; Nissim, N. Pressure of picosecond CPA laser pulses substitute ultrahigh thermal pressures to ignite fusion. High Energy Density Phys. 2020, 35, 100739. [Google Scholar] [CrossRef]
- Steinke, S.; Henig, A.; Schnürer, M.; Sokollik, T.; Nickles, P.V.; Jung, D.; Kiefer, D.; Hörlein, R.; Schreiber, J.; Tajima, T.; et al. Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 2010, 28, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Mikheev, G.M.; Mikheev, K.G.; Mogileva, T.N.; Puzyr, A.P.; Bondar, V.S. Laser image recording on detonation nanodiamond films. Quantum Electron. 2014, 44, 1–3. [Google Scholar] [CrossRef]
- Mikheev, K.G.; Mogileva, T.N.; Fateev, A.E.; Nunn, N.; Shenderova, O.A.; Mikheev, G.M. Laser modification of high-pressure high-temperature nanodiamonds. J. Phys. Conf. Ser. 2019, 1410, 012018. [Google Scholar] [CrossRef]
- Mikheev, G.M.; Krivenkov, R.Y.; Mogileva, T.N.; Mikheev, K.G.; Nunn, N.; Shenderova, O.A. Saturable Absorption in Suspensions of Single-Digit Detonation Nanodiamonds. J. Phys. Chem. C 2017, 121, 8630–8635. [Google Scholar] [CrossRef]
- Solin, S.A.; Ramdas, A.K. Raman Spectrum of Diamond. Phys. Rev. B 1970, 1, 1687–1698. [Google Scholar] [CrossRef]
- Mochalin, V.; Osswald, S.; Gogotsi, Y. Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders. Chem. Mater. 2009, 21, 273–279. [Google Scholar] [CrossRef]
- Chung, P.-H.; Perevedentseva, E.; Cheng, C.-L. The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 2007, 601, 3866–3870. [Google Scholar] [CrossRef]
- Zolotukhin, A.A.; Ismagilov, R.R.; Dolganov, M.A.; Obraztsov, A.N. Morphology and Raman Spectra Peculiarities of Chemical Vapor Deposition Diamond Films. J. Nanoelectron. Optoelectron. 2012, 7, 22–28. [Google Scholar] [CrossRef]
- Korepanov, V.I.; Hamaguchi, H.; Osawa, E.; Ermolenkov, V.; Lednev, I.K.; Etzold, B.J.M.; Levinson, O.; Zousman, B.; Epperla, C.P.; Chang, H.-C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon N. Y. 2017, 121, 322–329. [Google Scholar] [CrossRef]
- Jirásek, V.; Čech, J.; Kozak, H.; Artemenko, A.; Černák, M.; Kromka, A. Plasma treatment of detonation and HPHT nanodiamonds in diffuse coplanar surface barrier discharge in H 2 /N 2 flow. Phys. Status Solidi 2016, 213, 2680–2686. [Google Scholar] [CrossRef]
- Stehlik, S.; Varga, M.; Ledinsky, M.; Jirasek, V.; Artemenko, A.; Kozak, H.; Ondic, L.; Skakalova, V.; Argentero, G.; Pennycook, T.; et al. Size and Purity Control of HPHT Nanodiamonds down to 1 nm. J. Phys. Chem. C 2015, 119, 27708–27720. [Google Scholar] [CrossRef] [Green Version]
- Osswald, S.; Behler, K.; Gogotsi, Y. Laser-induced light emission from carbon nanoparticles. J. Appl. Phys. 2008, 104, 074308. [Google Scholar] [CrossRef]
- Osswald, S.; Yushin, G.; Mochalin, V.; Kucheyev, S.O.; Gogotsi, Y. Control of sp 2/sp 3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 2006, 128, 11635–11642. [Google Scholar] [CrossRef]
- Portet, C.; Yushin, G.; Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon N. Y. 2007, 45, 2511–2518. [Google Scholar] [CrossRef]
- Aslam, N.; Waldherr, G.; Neumann, P.; Jelezko, F.; Wrachtrup, J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys. 2013, 15, 013064. [Google Scholar] [CrossRef]
- Bourgeois, E.; Jarmola, A.; Siyushev, P.; Gulka, M.; Hruby, J.; Jelezko, F.; Budker, D.; Nesladek, M. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat. Commun. 2015, 6, 8577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manson, N.B.; Beha, K.; Batalov, A.; Rogers, L.J.; Doherty, M.W.; Bratschitsch, R.; Leitenstorfer, A. Assignment of the NV0 575-nm zero-phonon line in diamond to a 2E-2A2 transition. Phys. Rev. B 2013, 87, 155209. [Google Scholar] [CrossRef] [Green Version]
- Gaebel, T.; Domhan, M.; Wittmann, C.; Popa, I.; Jelezko, F.; Rabeau, J.; Greentree, A.; Prawer, S.; Trajkov, E.; Hemmer, P.R.; et al. Photochromism in single nitrogen-vacancy defect in diamond. Appl. Phys. B 2006, 82, 243–246. [Google Scholar] [CrossRef]
- Beha, K.; Batalov, A.; Manson, N.B.; Bratschitsch, R.; Leitenstorfer, A. Optimum Photoluminescence Excitation and Recharging Cycle of Single Nitrogen-Vacancy Centers in Ultrapure Diamond. Phys. Rev. Lett. 2012, 109, 097404. [Google Scholar] [CrossRef]
- Davies, G.; Lawson, S.C.; Collins, A.T.; Mainwood, A.; Sharp, S.J. Vacancy-related centers in diamond. Phys. Rev. B 1992, 46, 13157–13170. [Google Scholar] [CrossRef]
- Vlasov, I.I.; Shenderova, O.; Turner, S.; Lebedev, O.I.; Basov, A.A.; Sildos, I.; Rähn, M.; Shiryaev, A.A.; Van Tendeloo, G. Nitrogen and Luminescent Nitrogen-Vacancy Defects in Detonation Nanodiamond. Small 2010, 6, 687–694. [Google Scholar] [CrossRef]
- Lu, H.-C.; Peng, Y.-C.; Lin, M.-Y.; Chou, S.-L.; Lo, J.-I.; Cheng, B.-M. Analysis of Nickel Defect in Diamond with Photoluminescence upon Excitation near 200 nm. Anal. Chem. 2015, 87, 7340–7344. [Google Scholar] [CrossRef]
- Jelezko, F.; Wrachtrup, J. Single defect centres in diamond: A review. Phys. Status Solidi 2006, 203, 3207–3225. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef] [PubMed]
- Shenderova, O.A.; Shames, A.I.; Nunn, N.A.; Torelli, M.D.; Vlasov, I.; Zaitsev, A. Review Article: Synthesis, properties, and applications of fluorescent diamond particles. J. Vac. Sci. Technol. B 2019, 37, 030802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olejniczak, A.; Tomala, R.; Cichy, B.; Głuchowski, P.; Jakimów, M.; Zięba, A.; Kępiński, L.; Ignatenko, O.; Stręk, W. Laser-driven proliferation of sp2-sp3 changes during anti-Stokes white light emission of μ-diamonds. Carbon N. Y. 2019, 146, 438–446. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikheev, K.G.; Mogileva, T.N.; Fateev, A.E.; Nunn, N.A.; Shenderova, O.A.; Mikheev, G.M. Low-Power Laser Graphitization of High Pressure—High Temperature Nanodiamond Films. Appl. Sci. 2020, 10, 3329. https://doi.org/10.3390/app10093329
Mikheev KG, Mogileva TN, Fateev AE, Nunn NA, Shenderova OA, Mikheev GM. Low-Power Laser Graphitization of High Pressure—High Temperature Nanodiamond Films. Applied Sciences. 2020; 10(9):3329. https://doi.org/10.3390/app10093329
Chicago/Turabian StyleMikheev, Konstantin G., Tatyana N. Mogileva, Arseniy E. Fateev, Nicholas A. Nunn, Olga A. Shenderova, and Gennady M. Mikheev. 2020. "Low-Power Laser Graphitization of High Pressure—High Temperature Nanodiamond Films" Applied Sciences 10, no. 9: 3329. https://doi.org/10.3390/app10093329
APA StyleMikheev, K. G., Mogileva, T. N., Fateev, A. E., Nunn, N. A., Shenderova, O. A., & Mikheev, G. M. (2020). Low-Power Laser Graphitization of High Pressure—High Temperature Nanodiamond Films. Applied Sciences, 10(9), 3329. https://doi.org/10.3390/app10093329