Individual Topological Analysis of Synchronization-Based Brain Connectivity
Abstract
1. Introduction
2. Materials
fMRI Data
3. Methods
3.1. Synchronization in Phase Space
- a sine wave synchronized with itself throughout the observation period 0–T;
- a sine wave and a second sine wave fully synchronized during half of the observation period 0–;
- a sine wave and a second intermittently synchronized sine wave during a first observation interval 0– and a second observation interval –.
3.2. Analysis of fMRI Synchronization-Based Connectivity
3.2.1. Identification and Analysis of Functional Modules
3.2.2. Identification of Hub Nodes
- the participation coefficient is defined as:where is the sum of the weighted links attached to i, is the sum of weighted links from i to community s and is the total number of modules. Thus, the participation coefficient quantifies how the links of a node are distributed across modules. A node’s participation coefficient is maximum if it has an equal sum of edge weights to each module in the network. A node’s participation coefficient is 0 if all its links are within a single community.
- the within-module degree z score for each node is computed as:where is the number of links of node i to other nodes in its community , is the average of k over all of the nodes in and is the standard deviation of k in . Thus, the within-module degree z score measures how well-connected node i is to other nodes in the community relative to other nodes in the community.
4. Results and Discussions
4.1. Network Structure
4.2. Modularity Analysis
4.3. Hub Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J. Synchronization approach to analysis of biological systems. Fluct. Noise Lett. 2004, 4, L53–L62. [Google Scholar] [CrossRef]
- Zou, Y.; Donner, R.V.; Marwan, N.; Donges, J.F.; Kurths, J. Complex network approaches to nonlinear time series analysis. Phys. Rep. 2019, 787, 1–97. [Google Scholar] [CrossRef]
- Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C. The synchronization of chaotic systems. Phys. Rep. 2002, 366, 1–101. [Google Scholar] [CrossRef]
- Faure, P.; Korn, H. Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 2001, 324, 773–793. [Google Scholar] [CrossRef]
- Stephan, K.E.; Kasper, L.; Harrison, L.M.; Daunizeau, J.; den Ouden, H.E.; Breakspear, M.; Friston, K.J. Nonlinear dynamic causal models for fMRI. Neuroimage 2008, 42, 649–662. [Google Scholar] [CrossRef]
- Rabinovich, M.I.; Muezzinoglu, M. Nonlinear dynamics of the brain: emotion and cognition. Phys. Uspekhi 2010, 53, 357. [Google Scholar] [CrossRef]
- Amoroso, N.; La Rocca, M.; Bruno, S.; Maggipinto, T.; Monaco, A.; Bellotti, R.; Tangaro, S. Multiplex networks for early diagnosis of Alzheimer’s disease. Front. Aging Neurosci. 2018, 10, 365. [Google Scholar] [CrossRef]
- Lella, E.; Amoroso, N.; Lombardi, A.; Maggipinto, T.; Tangaro, S.; Bellotti, R.; Initiative, A.D.N. Communicability disruption in Alzheimer’s disease connectivity networks. J. Complex Netw. 2019, 7, 83–100. [Google Scholar] [CrossRef]
- Duarte-Carvajalino, J.M.; Jahanshad, N.; Lenglet, C.; McMahon, K.L.; De Zubicaray, G.I.; Martin, N.G.; Wright, M.J.; Thompson, P.M.; Sapiro, G. Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. Neuroimage 2012, 59, 3784–3804. [Google Scholar] [CrossRef]
- Ellis, C.T.; Lesnick, M.; Henselman-Petrusek, G.; Keller, B.; Cohen, J.D. Feasibility of topological data analysis for event-related fMRI. Netw. Neurosci. 2019, 3, 695–706. [Google Scholar] [CrossRef]
- Bernstein, A.; Burnaev, E.; Sharaev, M.; Kondrateva, E.; Kachan, O. Topological data analysis in computer vision. In Proceedings of the Twelfth International Conference on Machine Vision (ICMV 2019), Amsterdam, The Netherlands, 16–18 November 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11433, p. 114332. [Google Scholar]
- Bullmore, E.; Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Stam, C. Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int. J. Psychophysiol. 2010, 77, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Callicott, J.H.; Mattay, V.S.; Bertolino, A.; Finn, K.; Coppola, R.; Frank, J.A.; Goldberg, T.E.; Weinberger, D.R. Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb. Cortex 1999, 9, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heuvel, M.P.; Pol, H.E.H. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010, 20, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Fiecas, M.; Ombao, H.; Van Lunen, D.; Baumgartner, R.; Coimbra, A.; Feng, D. Quantifying temporal correlations: A test–retest evaluation of functional connectivity in resting-state fMRI. NeuroImage 2013, 65, 231–241. [Google Scholar] [CrossRef]
- Freeman, W.J.; Holmes, M.D.; Burke, B.C.; Vanhatalo, S. Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 2003, 114, 1053–1068. [Google Scholar] [CrossRef]
- Mumtaz, W.; Ali, S.S.A.; Yasin, M.A.M.; Malik, A.S. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med. Biol. Eng. Comput. 2018, 56, 233–246. [Google Scholar] [CrossRef]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. Neuroimage 2003, 19, 1273–1302. [Google Scholar] [CrossRef]
- Runge, J.; Heitzig, J.; Marwan, N.; Kurths, J. Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E 2012, 86, 061121. [Google Scholar] [CrossRef]
- Lombardi, A.; Tangaro, S.; Bellotti, R.; Bertolino, A.; Blasi, G.; Pergola, G.; Taurisano, P.; Guaragnella, C. A novel synchronization-based approach for functional connectivity analysis. Complexity 2017, 2017, 7190758. [Google Scholar] [CrossRef]
- Lombardi, A.; Lella, E.; Diacono, D.; Amoroso, N.; Monaco, A.; Bellotti, R.; Tangaro, S. Cross Recurrence Quantitative Analysis of Functional Magnetic Resonance Imaging. In Image Processing; Lecture Notes in Computational Vision and Biomechanics 34; Springer: Berlin/Heidelberg, Germany, 2019; pp. 86–92. [Google Scholar]
- Lombardi, A.; Amoroso, N.; Diacono, D.; Lella, E.; Bellotti, R.; Tangaro, S. Age related topological analysis of synchronization-based functional connectivity. In Proceedings of the International Conference on Complex Networks and Their Applications, Cambridge, UK, 11–13 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 652–662. [Google Scholar]
- Lombardi, A.; Guaragnella, C.; Amoroso, N.; Monaco, A.; Fazio, L.; Taurisano, P.; Pergola, G.; Blasi, G.; Bertolino, A.; Bellotti, R.; et al. Modelling cognitive loads in schizophrenia by means of new functional dynamic indexes. NeuroImage 2019, 195, 150–164. [Google Scholar] [CrossRef]
- Smitha, K.; Akhil Raja, K.; Arun, K.; Rajesh, P.; Thomas, B.; Kapilamoorthy, T.; Kesavadas, C. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 2017, 30, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heuvel, M.P.; Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 2011, 31, 15775–15786. [Google Scholar] [CrossRef] [PubMed]
- Harriger, L.; Van Den Heuvel, M.P.; Sporns, O. Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE 2012, 7, e46497. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.P.; Kahn, R.S.; Goñi, J.; Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci. USA 2012, 109, 11372–11377. [Google Scholar] [CrossRef]
- Fulcher, B.D.; Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl. Acad. Sci. USA 2016, 113, 1435–1440. [Google Scholar] [CrossRef]
- Mišić, B.; Sporns, O.; McIntosh, A.R. Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Comput. Biol. 2014, 10, e1003427. [Google Scholar] [CrossRef]
- Fornito, A.; Bullmore, E.T. Reconciling abnormalities of brain network structure and function in schizophrenia. Curr. Opin. Neurobiol. 2015, 30, 44–50. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 2015, 16, 159–172. [Google Scholar] [CrossRef]
- Dubois, J.; Adolphs, R. Building a science of individual differences from fMRI. Trends Cogn. Sci. 2016, 20, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Oliver, I.; Hlinka, J.; Kopal, J.; Davidsen, J. Quantifying the Variability in Resting-State Networks. Entropy 2019, 21, 882. [Google Scholar] [CrossRef]
- Zuo, X.N.; Anderson, J.S.; Bellec, P.; Birn, R.M.; Biswal, B.B.; Blautzik, J.; Breitner, J.C.; Buckner, R.L.; Calhoun, V.D.; Castellanos, F.X.; et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 2014, 1, 140049. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef]
- Marwan, N.; Kurths, J. Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 2002, 302, 299–307. [Google Scholar] [CrossRef]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Marwan, N.; Thiel, M.; Nowaczyk, N.R. Cross recurrence plot based synchronization of time series. arXiv 2002, arXiv:physics/0201062. [Google Scholar]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Alexander-Bloch, A.; Lambiotte, R.; Roberts, B.; Giedd, J.; Gogtay, N.; Bullmore, E. The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 2012, 59, 3889–3900. [Google Scholar] [CrossRef] [PubMed]
- Kuncheva, L.I.; Hadjitodorov, S.T. Using diversity in cluster ensembles. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), The Hague, The Netherlands, 10–13 October 2004; Volume 2, pp. 1214–1219. [Google Scholar]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef]
- Hilger, K.; Ekman, M.; Fiebach, C.J.; Basten, U. Intelligence is associated with the modular structure of intrinsic brain networks. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Bertolero, M.A.; Yeo, B.T.; Bassett, D.S.; D’Esposito, M. A mechanistic model of connector hubs, modularity and cognition. Nat. Hum. Behav. 2018, 2, 765–777. [Google Scholar] [CrossRef]
- Braun, U.; Schäfer, A.; Walter, H.; Erk, S.; Romanczuk-Seiferth, N.; Haddad, L.; Schweiger, J.I.; Grimm, O.; Heinz, A.; Tost, H.; et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. USA 2015, 112, 11678–11683. [Google Scholar] [CrossRef]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef]
- Thomas Yeo, B.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef]
- van den Heuvel, M.P.; Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 2013, 17, 683–696. [Google Scholar] [CrossRef]
- van den Heuvel, M.I.; Turk, E.; Manning, J.H.; Hect, J.; Hernandez-Andrade, E.; Hassan, S.S.; Romero, R.; van den Heuvel, M.P.; Thomason, M.E. Hubs in the human fetal brain network. Dev. Cogn. Neurosci. 2018, 30, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Oldham, S.; Fornito, A. The development of brain network hubs. Dev. Cogn. Neurosci. 2019, 36, 100607. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Krienen, F.M.; Castellanos, A.; Diaz, J.C.; Yeo, B.T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 2322–2345. [Google Scholar] [CrossRef] [PubMed]
- Power, J.D.; Schlaggar, B.L.; Lessov-Schlaggar, C.N.; Petersen, S.E. Evidence for hubs in human functional brain networks. Neuron 2013, 79, 798–813. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O.; Honey, C.J.; Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2007, 2, e1049. [Google Scholar] [CrossRef] [PubMed]








| Macro Region | ROI | SYNC | Pearson | Coherence | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PH | CH | KH | PH | CH | KH | PH | CH | KH | ||
| Frontal Lobe | SFGdor.L (3) | ✓ | ✓ | |||||||
| ORBinf.L (15) | ✓ | ✓ | ||||||||
| ORBinf.R (16) | ✓ | ✓ | ||||||||
| ROL.L (17) | ✓ | ✓ | ✓ | |||||||
| ROL.R (18) | ✓ | ✓ | ✓ | |||||||
| SFGmed.L (23) | ✓ | ✓ | ||||||||
| SFGmed.R (24) | ✓ | ✓ | ||||||||
| Insula and Cingulate Gyri | INS.L (29) | ✓ | ✓ | |||||||
| INS.R (30) | ✓ | ✓ | ||||||||
| DCG.L (33) | ✓ | |||||||||
| DCG.R (34) | ✓ | |||||||||
| Occipital Lobe | CAL.L (43) | ✓ | ✓ | |||||||
| CAL.R (44) | ✓ | ✓ | ||||||||
| LING.L (47) | ✓ | ✓ | ✓ | |||||||
| LING.R (48) | ✓ | ✓ | ✓ | |||||||
| Parietal Lobe | PoCG.L (57) | ✓ | ✓ | |||||||
| PoCG.R (58) | ✓ | ✓ | ||||||||
| PCUN.L (67) | ✓ | |||||||||
| PCUN.R (68) | ✓ | |||||||||
| Temporal Lobe | FFG.L (55) | ✓ | ||||||||
| FFG.R (56) | ✓ | |||||||||
| HES.L (79) | ✓ | |||||||||
| HES.R (80) | ✓ | |||||||||
| STG.L (81) | ✓ | ✓ | ||||||||
| STG.R (82) | ✓ | ✓ | ||||||||
| MTG.L (85) | ✓ | ✓ | ✓ | |||||||
| MTG.R (86) | ✓ | ✓ | ✓ | |||||||
| ITG.L (89) | ✓ | |||||||||
| ITG.R (90) | ✓ | |||||||||
| Posterior Fossa | CRBLCrus1.L (91) | ✓ | ✓ | |||||||
| CRBLCrus1.R (92) | ✓ | ✓ | ||||||||
| CRBLCrus2.L (93) | ✓ | |||||||||
| CRBLCrus2.R (94) | ✓ | ✓ | ||||||||
| CRBL6.L (99) | ✓ | ✓ | ✓ | |||||||
| CRBL6.L (100) | ✓ | ✓ | ✓ | |||||||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, A.; Amoroso, N.; Diacono, D.; Monaco, A.; Tangaro, S.; Bellotti, R. Individual Topological Analysis of Synchronization-Based Brain Connectivity. Appl. Sci. 2020, 10, 3275. https://doi.org/10.3390/app10093275
Lombardi A, Amoroso N, Diacono D, Monaco A, Tangaro S, Bellotti R. Individual Topological Analysis of Synchronization-Based Brain Connectivity. Applied Sciences. 2020; 10(9):3275. https://doi.org/10.3390/app10093275
Chicago/Turabian StyleLombardi, Angela, Nicola Amoroso, Domenico Diacono, Alfonso Monaco, Sabina Tangaro, and Roberto Bellotti. 2020. "Individual Topological Analysis of Synchronization-Based Brain Connectivity" Applied Sciences 10, no. 9: 3275. https://doi.org/10.3390/app10093275
APA StyleLombardi, A., Amoroso, N., Diacono, D., Monaco, A., Tangaro, S., & Bellotti, R. (2020). Individual Topological Analysis of Synchronization-Based Brain Connectivity. Applied Sciences, 10(9), 3275. https://doi.org/10.3390/app10093275

