Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Phytoremediation Plants
2.2. Harvesting and Sample Preparation
2.3. Hot Plate Acid Digestion and Atomic Absorption Spectrometry
- Am = The total heavy-metal concentration of Fe and Al in plant (mg/L)
- Be = Volume of extraction (L)
- Ca = The plant mass (kg)
2.4. Translocation Factor and Accumulated Heavy Metal Amount
3. Statistical Analysis
4. Quality Control
5. Results and Discussion
5.1. Initial Characteristics of Wastewater
5.2. Wastewater Treatment
5.2.1. Ipomoea Aquatica
5.2.2. Centella asiatica
5.2.3. Amount of Heavy Metals in Leaves, Stems, and Roots
5.2.4. Translocation Factor of Heavy Metals
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashraf, M.A.; Hanafiah, M.M. Sustaining life on earth system through clean air, pure water, and fertile soil. Environ. Sci. Pollut. Res. 2019, 26, 13679–13680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanafiah, M.M.; Yussof, M.K.M.; Hasan, M.; AbdulHasan, M.J.; Toriman, M.E. Water quality assessment of Tekala River, Selangor, Malaysia. Appl. Ecol. Environ. Res. 2018, 16, 5157–5174. [Google Scholar] [CrossRef]
- Ismail, N.I.; Abdullah, S.R.S.; Idris, M.; Abu Hasan, H.; Halmi, M.I.E.; Al Sbani, N.H.; Jehawi, O.H. Simultaneous bioaccumulation and translocation of iron and aluminium from mining wastewater by Scirpus grossus. Desalin. Water Treat. 2019, 163, 133–142. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Mohamad, N.H.S.M.; Aziz, N.I.H.A. Salvinia molesta dan Pistia stratiotes sebagai agen fitoremediasi dalam rawatan air sisa kumbahan. Sains Malays. 2018, 47, 1625–1634. [Google Scholar] [CrossRef]
- Morais, S.; Costa, F.G.E.; Pereira, M.D.L. Heavy Metals and Human Health. In Environmental Health: Emerging Issues and Practice; IntechOpen: Rijeka, Croatia, 2012; pp. 227–246. [Google Scholar]
- Shuhaimi-Othman, M.; Ahmad, A.; Mushrifah, I.; Lim, E.C. Seasonal influence on water quality and heavy metals concentration in Tasik Chini, Peninsular Malaysia. In Proceedings of the 2007: The 12th World Lake Conference, Jaipur, India, 28 October–2 November 2007; pp. 300–303. [Google Scholar]
- Ariffin, F.D.; Halim, A.A.; Hanafiah, M.M.; Ramlee, N.A. Kebolehupayaan fitoremediasi oleh Azolla pinnata dalam merawat air sisa akuakultur. Sains Malays. 2019, 42, 281–289. [Google Scholar] [CrossRef]
- Bakar, A.F.A.; Halim, A.A.; Hanafiah, M.M. Optimization of coagulation-flocculation process for automotive wastewater treatment using response surface methodology. Nat. Environ. Pollut. Tech. 2015, 14, 567–572. [Google Scholar]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Bakar, A.F.A.; Barkawi, S.N.M.; Hanafiah, M.M.; Ern, L.K.; Halim, A.A. Heavy metals removal from automotive wastewater using chemically modified sand. Sains Malays. 2016, 45, 1509–1516. [Google Scholar]
- Meagher, R.B. Phytoremediation of Toxic Elemental and Organic Pollutants. Curr. Opin. Plant Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef]
- Gisbert, C.; Ros, R.; De Haro, A.; Walker, D.J.; Bernal, M.P.; Serrano, R.; Navarro-Aviñó, J. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 2003, 303, 440–445. [Google Scholar] [CrossRef]
- James, J.T.; Dubery, I.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.). Molecules 2009, 14, 3922–3941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, C.K.; Fitri, M.R.; Mazyhar, Y.; Tan, S.G. Effects of Metal-contaminated Soils on the Accumulation of Heavy Metals in Different Parts of Centella asiatica: A Laboratory Study. Food Chem. Toxicol. 2010, 39, 347–352. [Google Scholar]
- Ahmadpour, P.; Anmadpour, F.; Mahmud, T.M.M.; Abdu, A.; Soleimani, M.; Hesseini Tayefeh, F. Phytoremediation of heavy metals: A green technology. Afr. J. Biotechnol. 2012, 11, 14036–14043. [Google Scholar]
- Favas, P.J.C.; Pratas, J.; Varun, M. Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. In Environmental Risk Assessment of Soil Contamination; IntechOpen: Rijeka, Croatia, 2014; pp. 487–517. [Google Scholar]
- Souza, L.A.; Piotto, F.A.; Nogueirol, R.C.; Azevedo, R.A. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci. Agric. 2013, 70, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Hanafiah, M.M.; Ghazali, N.F.; Harun, S.N.; Abdulaali, H.; AbdulHasan, M.J.; Kamarudin, M.K.A. Assessing water scarcity in Malaysia: A case study of rice production. Desalin. Water Treat. 2019, 149, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hasegawa, H. Aquatic Arsenic: Phytoremediation Using Floating Macrophytes. Chemosphere 2011, 83, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Tan, P.J.; Faruq, G.; Sofian, A.M.; Rosli, H.; Boyce, A.N. Use of Amaranth (Amaranthus paniculatus) and Indian Mustard (Brassica juncea) for Phytoextraction of Lead and Copper from Contaminated Soil. Int. J. Agric. Biol. 2013, 15, 903–908. [Google Scholar]
- Karami, A.; Shamsuddin, Z.H. Phytoremediation of heavy metals with several efficiency enhancer methods. Afr. J. Biotechnol. 2010, 9, 3689–3698. [Google Scholar]
- Majid, N.M.; Islam, M.M.; Nap, M.E.; Ghafoori, M.; Abdu, A. Heavy metal uptake and translocation by Justicia gendarussa Burm F. from textile sludge contaminated soil, Acta Agriculturae Scandinavica. Soil Plant Sci. 2012, 62, 101–108. [Google Scholar]
- Ho, W.M.; Ang, L.H.; Lee, D.K. Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J. Environ. Sci. 2008, 20, 1341–1347. [Google Scholar] [CrossRef]
- Choo, T.P.; Lee, C.K.; Low, K.S.; Hishamuddin, O. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere 2006, 62, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Syuhaida, A.W.A.; Norkhadijah, S.I.S.; Praveena, S.M.; Suriyani, A. The Comparison of Phytoremediation Abilities of Water Mimosa and Water Hyacinth. J. Sci. Technol. 2014, 4, 722–731. [Google Scholar]
- Akinbile, C.O.; Yusoff, M.S. Assessing Water Hyacinth (Eichhornia crassopes) And Lettuce (Pistia stratiotes) Effectiveness. In Aquaculture Wastewater Treatment. Int. J. Phytore. 2012, 14, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Chu, W.L.; Phang, S.M. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 2010, 101, 7314–7322. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Assessment of phytoextraction efficiency of naturally grown plant species at the former tin mining catchment. Fresenius Environ. Bull. 2012, 21, 523–533. [Google Scholar]
- Flora Zambesiaca, Kew Databases. Royal Botanical Gardens Kew; Richmond, VT, USA, 2014. Available online: http://apps.kew.org/efloras/fz/families.htm[10/12/2016] (accessed on 15 November 2019).
- Hashim, P.; Sidek, H.; Helan, M.H.M.; Sabery, A.; Palanisamy, U.D.; Ilham, M. Triterpene composition and bioactivities of Centella asiatica. Molecules 2011, 16, 1310–1322. [Google Scholar] [CrossRef]
- Ton, S.-S.; Lee, M.-W.; Yang, Y.-H.; Hoi, S.-K.; Cheng, W.-C.; Wang, K.-S.; Chang, H.-H. Effects of Reductants on Phytoextraction of Chromium (VI) Ipomoea aquatica. Int. J. Phytore. 2014, 17, 429–436. [Google Scholar] [CrossRef]
- Ladislas, S.; Gérente, C.; Chazarenc, F.; Brisson, J.; Andrès, Y. Performances of Two Macrophytes Species in Floating Treatment Wetlands for Cadmium, Nickel, and Zinc Removal from Urban Stormwater Runoff. Water Air Soil Pollut. 2013, 224, 1408. [Google Scholar] [CrossRef]
- Zhang, I.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef]
- Azarpira, H.; Behdarvand, P.; Dhumal, K.; Pondhe, G. Phytoremediation of Municipal Wastewater by Using Aquatic Plants. Adv. Environ. Biol. 2013, 7, 4649–4654. [Google Scholar]
- Bhaduri, A.M.; Fulekar, M. Assessment of Arbuscular Mycorrhizal Fungi on the Phytoremediation Potential of Ipomoea aquatica on Cadmium Uptake. Biotech 2012, 2, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Chanu, L.B.; Gupta, A. Phytoremediation of Lead Using Ipomoea aquatica Forsk. In Hydroponic Solution. Chemosphere 2016, 156, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Effendi, H.; Utomo, B.A.; Darmawangsa, G.M. Phytoremediation of Freshwater Crayfish (Cherax quadricarinatus) Culture Wastewater with Spinach (Ipomoea aquatica) in Aquaponic System. AACL Bioflux 2015, 8, 421–430. [Google Scholar]
- Mahmud, H.; Lee, K.E.; Goh, T. On-Site Phytoremediation Applicability Assessment in Alur Ilmu, Universiti Kebangsaan Malaysia Based on Spatial and Pollution Removal Analyses. Environ. Sci. Pollut. 2017, 24, 22873–22884. [Google Scholar] [CrossRef] [PubMed]
- Md Saat, S.K.; Qamaruz Zaman, N. Suitability of Ipomoea aquatica for the Treatment of Effluent from Palm Oil Mill. J. Built Environ. Technol. Eng. 2017, 2, 39–44. [Google Scholar]
- Mokhtar, H.; Morad, N.; Fizri, F.F.A. Phytoaccumulation of Copper from Aqueous Solutions using Eichhornia crassipes and Centella asiatica. Int. J. Environ. Sci. Dev. 2011, 2, 205. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Noor, I.M.; Karim, H.I.A. Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Appl. Sci. 2020, 10, 1–11. [Google Scholar]
- Nuwansi, T.; Verma, A.; Rathore, G.; Prakash, C.; Chandrakant, M.H.; Prabhath, A. Utilization of Phytoremediated Aquaculture Wastewater for Production of Koi Carp (Cyprinus carpio Var. Koi) and Gotukola (Centella asiatica) in an Aquaponics. Aquacult 2019, 507, 361–369. [Google Scholar] [CrossRef]
- Rane, N.R.; Patil, S.M.; Chandanshive, V.V.; Kadam, S.K.; Khandare, R.V.; Jadhav, J.P.; Govindwar, S.P. Ipomoea hederifolia Rooted Soil Bed and Ipomoea aquatica Rhizofiltration Coupled Phytoreactors for Efficient Treatment of Textile Wastewater. Water Res. 2016, 96, 1–11. [Google Scholar] [CrossRef]
- Syabani, M.; Nugraha, F.; Noordiyanto. Phytoremediation Potential of Ipomoea aquatica for Water Contaminated with Hexavalent Chromium (Potensi Phytoremediation Dari Ipomoea aquatica Untuk Air Terkontaminasi Kromium Valensi Enam). In Proceedings of the Prosiding Workshop Penelitian dan Pengembangan Kulit, Karet dan Plastik, Yogyakarta, Indonesia, 19 October 2011; pp. 1–13. [Google Scholar]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environt. 2006, 368, 456464. [Google Scholar] [CrossRef]
Parameter | Industrial Wastewater | Department of Environment (DOE) (2009) | |
Standard A | Standard B | ||
pH | 7.86 | 6.0–9.0 | 5.5–9.0 |
Temperature (°C) | 31.0 | 40 | 40 |
Turbidity (NTU) | 20.07 | - | - |
Total Dissolved Solid (mg/L) | 1132 | - | - |
Conductivity (µs) | 1613 | - | - |
Fluoride (F−) | 0.8 | 2.0 | 5.0 |
Nitrate (mg/L) | 41.52 | - | - |
Chemical Oxygen Demand (mg/L) | 40 | - | - |
Biological Oxygen Demand (mg/L) | 5.6 | - | - |
Hardness (mg/L) | 829 | - | - |
Element | Heavy Metals Concentration (mg/L) | Department of Environment (DOE) (2009) (mg/L) | |
Aluminum | 0.30 | 10 | 15 |
Barium | 0.12 | 1.0 | 2.0 |
Calcium | 136.84 | - | - |
Iron | 1.09 | 1.0 | 5.0 |
Potassium | 12.58 | - | - |
Lithium | 0.02 | - | - |
Magnesium | 11.02 | - | - |
Manganese | 0.07 | 0.20 | 1.0 |
Nickel | 0.01 | 0.20 | 1.0 |
Rubidium | 0.03 | - | - |
Strontium | 0.35 | - | - |
Zinc | 0.07 | 2.0 | 2.0 |
Translocation Factor/Day (TF) | ||||||
---|---|---|---|---|---|---|
Ipomoea aquatica | ||||||
Day | 2 | 4 | 6 | 8 | 10 | MIN |
Aluminum | 0.34 | 0.54 | 0.47 | 0.08 | (0.09) | 0.27 |
Iron | 0.05 | 0.17 | 0.61 | 0.09 | 0.21 | 0.19 |
Centella asiatica | ||||||
Day | 2 | 4 | 6 | 8 | 10 | MIN |
Aluminum | 2.14 | 3.28 | 54.94 | 0.33 | 0.16 | 11.97 |
Iron | 3.11 | 0.99 | 0.38 | 0.37 | 0.39 | 1.05 |
Translocation Factor/Day (TF) | ||||||
---|---|---|---|---|---|---|
Ipomoea aquatica | ||||||
Day | 2 | 4 | 6 | 8 | 10 | MIN |
Aluminum | 1.07 | 1.89 | 0.23 | 0.27 | 0.10 | 0.71 |
Iron | 0.73 | 0.18 | 0.07 | −0.01 | −0.23 | 0.15 |
Centella asiatica | ||||||
Day | 2 | 4 | 6 | 8 | 10 | MIN |
Aluminum | 1.78 | 6.48 | 133.20 | (0.36) | (0.31) | 28.16 |
Iron | (1.25) | (1.46) | (0.12) | (0.13) | (0.37) | (0.67) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanafiah, M.M.; Zainuddin, M.F.; Mohd Nizam, N.U.; Halim, A.A.; Rasool, A. Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Appl. Sci. 2020, 10, 3064. https://doi.org/10.3390/app10093064
Hanafiah MM, Zainuddin MF, Mohd Nizam NU, Halim AA, Rasool A. Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Applied Sciences. 2020; 10(9):3064. https://doi.org/10.3390/app10093064
Chicago/Turabian StyleHanafiah, Marlia Mohd, Muhamad F. Zainuddin, Nurul Umairah Mohd Nizam, Azhar Abdul Halim, and Akhtar Rasool. 2020. "Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica" Applied Sciences 10, no. 9: 3064. https://doi.org/10.3390/app10093064
APA StyleHanafiah, M. M., Zainuddin, M. F., Mohd Nizam, N. U., Halim, A. A., & Rasool, A. (2020). Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Applied Sciences, 10(9), 3064. https://doi.org/10.3390/app10093064