Novel Hybrid PETG Composites for 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Filaments
2.3. Mechanical Properties
2.4. Thermogravimetric Analysis
2.5. Nanoindentation
2.6. Contact Angle Measurements
2.7. Density
2.8. Scanning Electron Microscopy
2.9. Dilatometry
2.10. 3D Printing
3. Results
3.1. Characterization of the Properties of Virgin PETG and Recycled PETG
3.2. Properties of Virgin PETG with Expanded Graphite
3.3. Properties of Virgin PETG Filled with Carbon Fibers
3.4. Properties of Virgin PETG Filled with EG and CFs
3.5. Characterization of the Properties of Recycled PETG Filled with EG, CFs, and Their Combination
3.6. Testing of Prepared Samples by 3D Printing
4. Conclusions
5. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Hull, C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. U.S. Patent No. 4575330, 8 August 1984. [Google Scholar]
- Deckard, C.R.; Beaman, J.J.; Darrah, J.F. Method for Selective Laser Sintering with Layerwise Cross-Scanning. USA Patent No. 5155324, 17 October 1986. [Google Scholar]
- Sun, L.; Hua, G.; Cheng, T.C.E.; Wang, Y. How to price 3D-printed products? Pricing strategy for 3D printing platforms. Int. J. Prod. Econ. 2020. [Google Scholar] [CrossRef]
- Tran, J.L. 3D-Printed Food. Minnesota J. Law Sci. Technol. 2016, 17, 855. [Google Scholar]
- Kanazawa, M.; Inokoshi, M.; Minakuchi, S.; Ohbayashi, N. Trial of a CAD/CAM system for fabricating complete dentures. Dent. Mater. J. 2011, 30, 93–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Bazlov, V.A.; Mamuladze, T.Z.; Pavlov, V.V.; Kirilova, I.A.; Sadovoy, M.A. Modern materials in fabrication of scaffolds for bone defect replacement. AIP Conf. Proc. 2016, 1760, 020004. [Google Scholar]
- Mangano, C.; Bianchi, A.; Mangano, F.G.; Dana, J.; Colombo, M.; Solop, I.; Admakin, O. Custom-made 3D printed subperiosteal titanium implants for the prosthetic restoration of the atrophic posterior mandible of elderly patients: A case series. 3D Print. Med. 2020, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondokaryono, R.; González, L.; Garrido, K.; Sujumnong, N.; Wee, A.; Goal, A.O. A Graphic User Interface (GUI) to build a cost-effective customizable 3D printed Prosthetic Hand. bioRxiv 2020. [Google Scholar] [CrossRef]
- Mironov, V.; Boland, T.; Trusk, T.; Forgacs, G.; Markwald, R.R. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003, 21, 157–161. [Google Scholar] [CrossRef]
- Lee Ventola, C. Medical applications for 3D printing: Current and projected uses. Pharm. Ther. 2014, 39, 704–711. [Google Scholar]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszkiewicz, S.; Szymczyk, A.; Pawlikowska, D.; Irska, I.; Taraghi, I.; Pilawka, R.; Gu, J.; Li, X.; Tu, Y.; Piesowicz, E. Synthesis and characterization of poly(ethylene terephthalate-: Co -1,4-cyclohexanedimethylene terephtlatate)- block -poly(tetramethylene oxide) copolymers. RSC Adv. 2017, 7, 41745–41754. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.Q.; Greener, J.; Avila-Orta, C.A.; Hsiao, B.S.; Blanton, T.N. The relationship between microstructure and toughness of biaxially oriented semicrystalline polyester films. Polymer 2008, 49, 2507–2514. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Zhou, H.; Liu, B.; Li, H.; Du, Z.; Zhang, C. Study on the effect of dispersion phase morphology on porous structure of poly (lactic acid)/poly (ethylene terephthalate glycol-modified) blending foams. Polymer 2013, 54, 5839–5851. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, J.; You, H. Photodegradation behavior and mechanism of poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymers: Correlation with copolymer composition. RSC Adv. 2016, 6, 102778–102790. [Google Scholar] [CrossRef]
- Liu, Y. Synthesis and Characterization of Amorphous Cycloaliphatic Copolyesters with Novel Structures and Architectures. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 22 March 2012. [Google Scholar]
- Li, B.; Zhang, X.; Zhang, Q.; Chen, F.; Fu, Q. Synergistic enhancement in tensile strength and ductility of ABS by using recycled PETG plastic. J. Appl. Polym. Sci. 2009, 113, 1207–1215. [Google Scholar] [CrossRef]
- Scheirs, J.; Long, T.E. (Eds.) Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Wiley Series in Polymer Science; John Wiley & Sons Ltd.: Chichester, UK, 2004; ISBN 0471498564. [Google Scholar]
- Junkar, I.; Vesel, A.; Cvelbar, U.; Mozetič, M.; Strnad, S. Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum 2009, 84, 83–85. [Google Scholar] [CrossRef]
- Kepić, D.P.; Ristić, I.S.; Marinović-Cincović, M.T.; Peruško, D.B.; Špitálsky, Z.; Pavlović, V.B.; Budimir, M.D.; Šiffalovič, P.; Dramićanin, M.D.; Mičušík, M.; et al. Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. Polym. Int. 2018, 67, 1118–1127. [Google Scholar] [CrossRef]
- Staniszewski, Z.; Fray, M. El Influence of thermally exfoliated graphite on physicochemical, thermal and mechanical properties of copolyester nanocomposites. Polimery 2016, 61, 482–489. [Google Scholar] [CrossRef]
wt.% PETG | wt.% EG | wt.% T700S | wt.% Filler | |
---|---|---|---|---|
100% | 0% | 0% | 0% | |
AG-1 | 99% | 1% | 0% | 1% |
AG-2 | 98% | 2% | 0% | 2% |
AG-3 | 97% | 3% | 0% | 3% |
AG-4 | 96% | 4% | 0% | 4% |
AG-5 | 95% | 5% | 0% | 5% |
AG-10 | 90% | 10% | 0% | 10% |
AF-1 | 99% | 0% | 1% | 1% |
AF-2 | 92% | 0% | 2% | 2% |
AF-3 | 97% | 0% | 3% | 3% |
AF-4 | 96% | 0% | 4% | 4% |
AF-5 | 95% | 0% | 5% | 5% |
AF-10 | 90% | 0% | 10% | 10% |
AF-20 | 80% | 0% | 20% | 20% |
AGF-8:2 | 90% | 8% | 2% | 10% |
AGF-6:4 | 90% | 6% | 4% | 10% |
AGF-5:5 | 90% | 5% | 5% | 10% |
AGF-4:6 | 90% | 4% | 6% | 10% |
AGF-2:8 | 90% | 2% | 8% | 10% |
wt.% PETG | wt.% EG | wt.% T700S | wt.% Filler | |
---|---|---|---|---|
B | 100% | 0% | 0% | 0% |
BG-5 | 95% | 5% | 0% | 5% |
BF-5 | 95% | 0% | 5% | 5% |
BGF-5:5 | 90% | 5% | 5% | 10% |
E (MPa) | σY (MPa) | σB (MPa) | εB (%) | T10 (°C) | T50 (°C) | m550 (%) | Contact Angle (°) | ρ (g·cm−3) | |
---|---|---|---|---|---|---|---|---|---|
A | 1600 ± 90 | 58.3 ± 2.1 | 59.7 ± 5.5 | 362.5 ± 10.9 | 402.1 | 431.8 | 9.0 | 86.9 ± 2.6 | 1.27 |
B | 1690 ± 40 | 58.4 ± 4.6 | 55.1 ± 1.4 | 326.2 ± 52.8 | 401.9 | 426.5 | 9.2 | 83.3 ± 2.6 | 1.32 |
Sample | E (MPa) | σY (MPa) | σB (MPa) | εB (%) | Er (GPa) | H (GPa) |
---|---|---|---|---|---|---|
A | 1600 ± 90 | 58.3 ± 2.1 | 59.7 ± 5.5 | 362.5 ± 10.9 | 2.59 ± 0.50 | 0.13 ± 0.03 |
AG-1 | 1970 ± 120 | 57.7 ± 4.4 | 57.6 ± 4.3 | 4.4 ± 0.4 | 2.80 ± 0.10 | 0.14 ± 0.01 |
AG-2 | 2040 ± 75 | 55.1 ± 1.9 | 53.5 ± 3.9 | 4.5 ± 0.6 | 2.88 ± 0.36 | 0.13 ± 0.02 |
AG-3 | 2150 ± 225 | 54.1 ± 3.3 | 53.1 ± 2.3 | 4.4 ± 0.5 | 3.07 ± 0.13 | 0.14 ± 0.01 |
AG-4 | 2190 ± 40 | 55.4 ± 5.2 | 53.6 ± 6.6 | 4.4 ± 0.8 | 3.07 ± 0.17 | 0.14 ± 0.01 |
AG-5 | 2250 ± 70 | 54.6 ± 3.9 | 53.4 ± 4.0 | 4.5 ± 0.9 | 3.29 ± 0.17 | 0.14 ± 0.01 |
AG-10 | 2630 ± 90 | 32.1 ± 2.2 | 32.2 ± 1.8 | 2.4 ± 0.2 | 3.86 ± 0.20 | 0.14 ± 0.01 |
Sample | T10 (°C) | T50 (°C) | m550 (%) | α (10−6 K−1) |
---|---|---|---|---|
A | 402.1 | 431.8 | 9.0 | 60.12 |
AG-1 | 401.6 | 426.2 | 9.2 | 60.70 |
AG-2 | 402.6 | 427.5 | 9.7 | 62.06 |
AG-3 | 402.1 | 428.5 | 9.2 | 64.85 |
AG-4 | 403.3 | 430.5 | 10.0 | 52.07 |
AG-5 | 402.9 | 431.7 | 10.9 | 51.23 |
AG-10 | 404.3 | 432.5 | 12.4 | 55.14 |
Sample | Density (g·cm−3) | Contact Angle (°) |
---|---|---|
A | 1.27 | 86.9 ± 2.6 |
AG-1 | 1.30 | 78.8 ± 3.8 |
AG-2 | 1.30 | 76.9 ± 3.6 |
AG-3 | 1.31 | 75.1 ± 2.4 |
AG-4 | 1.31 | 73.3 ± 4.1 |
AG-5 | 1.32 | 71.3 ± 3.5 |
AG-10 | 1.32 | 70.9 ± 5.2 |
Sample | E (MPa) | σY (MPa) | σB (MPa) | εB (%) | Er (GPa) | H (GPa) |
---|---|---|---|---|---|---|
A | 1600 ± 90 | 58.3 ± 2.1 | 59.7 ± 5.5 | 362.5 ± 10.9 | 2.59 ± 0.50 | 0.13 ± 0.03 |
AF-1 | 1850 ± 100 | 60.1 ± 1.8 | 66.4 ± 1.8 | 6.2 ± 2.7 | 2.72 ± 0.12 | 0.14 ± 0.0 |
AF-2 | 1990 ± 135 | 61.2 ± 4.3 | 64.9 ± 5.6 | 5.7 ± 1.2 | 2.69 ± 0.22 | 0.14 ± 0.02 |
AF-3 | 2110 ± 110 | 65.6 ± 3.0 | 65.0 ± 3.2 | 5.0 ± 0.1 | 2.60 ± 0.18 | 0.15 ± 0.01 |
AF-4 | 2370 ± 285 | 66.3 ± 2.2 | 66.4 ± 2.1 | 4.8 ± 0.3 | 2.60 ± 0.37 | 0.13 ± 0.02 |
AF-5 | 2860 ± 190 | 75.3 ± 4.5 | 72.1 ± 1.0 | 5.1 ± 0.5 | 2.72 ± 0.31 | 0.13 ± 0.02 |
AF-10 | 3430 ± 120 | 75.4 ± 3.4 | 73.5 ± 6.6 | 5.7 ± 1.3 | 2.75 ± 0.53 | 0.13 ± 0.03 |
AF-20 | 3580 ± 275 | 75.8 ± 1.7 | 74.4 ± 2.1 | 3.9 ± 1.3 | 3.09 ± 0.67 | 0.13 ± 0.04 |
Sample | T10 (°C) | T50 (°C) | m550 (%) | α (10−6 K−1) |
---|---|---|---|---|
A | 402.1 | 431.8 | 9.0 | 60.12 |
AF-1 | 397.2 | 425.9 | 7.1 | 55.12 |
AF-2 | 399.6 | 427.4 | 7.8 | 51.46 |
AF-3 | 399.3 | 427.3 | 9.5 | 48.16 |
AF-4 | 399.7 | 427.5 | 9.2 | 45.35 |
AF-5 | 400.3 | 428.4 | 11.3 | 39.74 |
AF-10 | 401.0 | 429.6 | 14.8 | 34.35 |
AF-20 | 401.1 | 432.7 | 23.7 | 28.79 |
Sample | Density (g·cm−3) | Contact Angle (°) |
---|---|---|
A | 1.27 | 86.9 ± 2.6 |
AF-1 | 1.27 | 77.5 ± 4.9 |
AF-2 | 1.24 | 76.5 ± 3.5 |
AF-3 | 1.16 | 77.9 ± 4.4 |
AF-4 | 1.12 | 75.4 ± 3.3 |
AF-5 | 1.13 | 74.7 ± 4.3 |
AF-10 | 1.13 | 70.3 ± 3.0 |
AF-20 | 1.12 | 64.8 ± 3.6 |
Sample | E (MPa) | σY (MPa) | σB (MPa) | εB (%) | Er (GPa) | H (GPa) |
---|---|---|---|---|---|---|
A | 1600 ± 90 | 58.3 ± 2.1 | 59.7 ± 5.5 | 362.5 ± 10.9 | 2.59 ± 0.50 | 0.13 ± 0.03 |
AGF-8:2 | 2646 ± 170 | 63.4 ± 2.7 | 58.6 ± 2.3 | 4.6 ± 0.8 | 4.02 ± 0.24 | 0.16 ± 0.02 |
AGF-6:4 | 3364 ± 190 | 66.9 ± 5.9 | 65.7 ± 5.8 | 4.2 ± 0.8 | 3.76 ± 0.28 | 0.15 ± 0.01 |
AGF-5:5 | 3054 ± 235 | 66.2 ± 1.1 | 62.4 ± 5.8 | 4.9 ± 1.6 | 3.26 ± 0.38 | 0.14 ± 0.02 |
AGF-4:6 | 3095 ± 370 | 66.4 ± 4.1 | 63.9 ± 3.9 | 5.1 ± 1.2 | 3.49 ± 0.21 | 0.14 ± 0.01 |
AGF-2:8 | 3330 ± 480 | 69.1 ± 7.4 | 66.3 ± 1.3 | 4.5 ± 1.6 | 3.35 ± 0.25 | 0.14 ± 0.01 |
Sample | T10 (°C) | T50 (°C) | m550 (%) | α (10−6 K−1) |
---|---|---|---|---|
A | 402.1 | 431.8 | 9.0 | 60.12 |
AGF-8:2 | 400.9 | 430.1 | 12.0 | 48.86 |
AGF-6:4 | 401.5 | 431.7 | 15.6 | 48.68 |
AGF-5:5 | 402.1 | 431.8 | 14.8 | 34.83 |
AGF-4:6 | 403.6 | 431.9 | 16.8 | 36.61 |
AGF-2:8 | 401.7 | 431.7 | 14.9 | 40.37 |
Sample | Density (g·cm−3) | Contact Angle (°) |
---|---|---|
A | 1.27 | 86.9 ± 2.6 |
AGF-8:2 | 1.29 | 89.9 ± 3.6 |
AGF-6:4 | 1.21 | 85.5 ± 6.7 |
AGF-5:5 | 1.20 | 81.3 ± 6.8 |
AGF-4:6 | 1.20 | 80.2 ± 5.4 |
AGF-2:8 | 1.17 | 79.3 ± 5.5 |
Sample | E (MPa) | σY (MPa) | σB (MPa) | εB (%) | Er (GPa) | H (GPa) |
---|---|---|---|---|---|---|
B | 1690 ± 45 | 58.4 ± 4.6 | 55.1 ± 1.4 | 326.2 ± 52.8 | 2.41 ± 0.13 | 0.11 ± 0.01 |
BG-5 | 2115 ± 120 | 53.6 ± 1.8 | 52.8 ± 1.4 | 4.8 ± 0.7 | 2.87 ± 0.25 | 0.11 ± 0.01 |
BF-5 | 2500 ± 265 | 67.4 ± 3.0 | 66.8 ± 2.7 | 4.9 ± 0.6 | 3.14 ± 0.38 | 0.11 ± 0.01 |
BGF-5:5 | 3110 ± 190 | 64.5 ± 4.3 | 63.2 ± 3.3 | 4.3 ± 0.4 | 2.47 ± 0.3 | 0.11 ± 0.02 |
Sample | T10 (°C) | T50 (°C) | m550 (%) | α (10−6 K−1) |
---|---|---|---|---|
B | 401.9 | 426.5 | 9.2 | 73.71 |
BG-5 | 402.1 | 429.5 | 10.1 | 61.24 |
BF-5 | 398.4 | 426.7 | 9.6 | 48.41 |
BGF-5:5 | 404.9 | 432.2 | 17.4 | 46.04 |
Sample | Contact Angle (°) | Density (g·cm−3) |
---|---|---|
B | 83.3 ± 2.6 | 1.32 |
BG-5 | 87.8 ± 5.1 | 1.33 |
BF-5 | 87.5 ± 5.6 | 1.29 |
BGF-5:5 | 86.8 ± 3.6 | 1.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kováčová, M.; Kozakovičová, J.; Procházka, M.; Janigová, I.; Vysopal, M.; Černičková, I.; Krajčovič, J.; Špitalský, Z. Novel Hybrid PETG Composites for 3D Printing. Appl. Sci. 2020, 10, 3062. https://doi.org/10.3390/app10093062
Kováčová M, Kozakovičová J, Procházka M, Janigová I, Vysopal M, Černičková I, Krajčovič J, Špitalský Z. Novel Hybrid PETG Composites for 3D Printing. Applied Sciences. 2020; 10(9):3062. https://doi.org/10.3390/app10093062
Chicago/Turabian StyleKováčová, Mária, Jana Kozakovičová, Michal Procházka, Ivica Janigová, Marek Vysopal, Ivona Černičková, Jozef Krajčovič, and Zdenko Špitalský. 2020. "Novel Hybrid PETG Composites for 3D Printing" Applied Sciences 10, no. 9: 3062. https://doi.org/10.3390/app10093062
APA StyleKováčová, M., Kozakovičová, J., Procházka, M., Janigová, I., Vysopal, M., Černičková, I., Krajčovič, J., & Špitalský, Z. (2020). Novel Hybrid PETG Composites for 3D Printing. Applied Sciences, 10(9), 3062. https://doi.org/10.3390/app10093062