Study on Pressure Characteristics and Its Evolution Law at the Ellipsoidal End Cover Pole of Cylindrical Explosion Containment Vessels
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Setup
2.2. Experimental Results
3. Numerical Simulation
3.1. Modeling and Parameters
3.2. Internal Explosion Flow Field at the End Cover of the Vessel
3.2.1. Typical Explosion Flow Field at the End Cover of the Vessel
3.2.2. Influence of Scaled Distance on Internal Explosion Flow Field
3.2.3. Influence of Aspect Ratio on Internal Explosion Flow Field
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, W.H.; Xue, H.L.; Zang, Z.Y. Combining analytical method with numerical simulation to obtain blast load on chamber wall produced by an explosive charge. J. Nat. Univ. Def. Technol. 1997, 19, 102–106. (In Chinese) [Google Scholar]
- Kevorkian, S.; Duriez, N.; Loiseau, O. Laboratory scale tests for internal blast loading. WIT. Trans. Built. Environ. 2010, 113, 125–136. [Google Scholar]
- Zhao, C.F.; Chen, J.Y.; Wang, Y.; Lu, S.J. Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theor. Appl. Fract. Mech. 2012, 61, 12–20. [Google Scholar] [CrossRef]
- Wu, C.; Lukaszewicz, M.; Schebella, K.; Antanovskii, L. Experimental and numerical investigation of confined explosion in a blast chamber. J. Loss Prev. Process Ind. 2013, 26, 737–750. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, K.; Zhao, Y. Numerical simulation for internal vapor cloud explosion loading in dome-roof steel tanks. J. Vib. Shock 2013, 32, 35–40. (In Chinese) [Google Scholar]
- Pickerd, V.; Bornstein, H.; McCarthy, P.; Buckland, M. Analysis of the structural response and failure of containers subjected to internal blast loading. Int. J. Impact Eng. 2016, 95, 40–53. [Google Scholar] [CrossRef]
- Wang, W.; Gao, X.; Le, L. Study of the Similarities in Scale Models of a Single-Layer Spherical Lattice Shell Structure under the Effect of Internal Explosion. Shock Vib. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.R.; Wang, S.Q.; Jiang, H.Y.; Zhang, Y.L.; Wang, Z.H. Experimental studies on characteristics of explosion pressure load in cylinder apparatus. Baozha Yu Chongji 2019, 39, 14–21. (In Chinese) [Google Scholar]
- Demchuk, A.F. Method for designing explosion chambers. J. Appl. Mech. Tech. Phys. 1968, 9, 558–559. [Google Scholar] [CrossRef]
- Kornev, V.M.; Adishchev, V.V.; Mitrofanov, A.N.; Grekhov, V.A. Experimental investigation and analysis of the vibrations of the shell of an explosion chamber. Fiz Goreniya Vzryva 1979, 15, 821–824. [Google Scholar] [CrossRef]
- Karpp, R.R.; Duffey, T.A.; Neal, T.R. Response of Containment Vessels to Explosive Blast Loading. J. Press. Vessel Technol.-Trans. ASME 1983, 105, 23–27. [Google Scholar] [CrossRef]
- Duffey, T.A.; Romero, C. Strain growth in spherical explosive chambers subjected to internal blast loading. Int. J. Impact Eng. 2003, 28, 967–983. [Google Scholar] [CrossRef]
- Li, Q.M.; Dong, Q.; Zheng, J.Y. Strain growth of the in-plane response in an elastic cylindrical shell. Int. J. Impact Eng. 2008, 35, 1130–1153. [Google Scholar] [CrossRef]
- Dong, Q.; Li, Q.M.; Zheng, J.Y. Investigation on the mechanisms of strain growth in cylindrical containment vessels subjected to internal blast loading. In Proceedings of the ASME Pressure Vessels And Piping Conference; Dixon, R.D., Springer, B., Auyang, M.K., Eds.; ASME: New York, NY, USA, 2009; Volume 5. [Google Scholar]
- Dong, Q.; Li, Q.M.; Zheng, J.Y. Guidelines for the design of multiple-use explosion containment vessels based on the understanding of the strain growth phenomenon. J. Perform. Constr. Facil. 2011, 25, 394–399. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Zhong, F.; Cheng, S.; Zhang, D.; Yang, L. Further research on mechanism of strain growth caused by superposition of different vibration modes. Int. J. Impact Eng. 2017, 104, 1–12. [Google Scholar] [CrossRef]
- ANSYS; LSTC. LS-DYNA Keyword User’s Manual Volume I R11.0. Available online: http://ftp.lstc.com/anonymous/outgoing/jday/manuals/LS-DYNA_Manual_Volume_I_R11.pdf (accessed on 18 October 2018).
- Kalra, A.; Zhu, F.; Yang, K.H.; King, A.I. Key parameters in blast modeling using 2d to 3d ale mapping technique. In Proceedings of the 13th International LS-DYNA Users Conference, Dearborn, Detroit, MI, USA, 8–10 June 2014; pp. 1–8. [Google Scholar]
- Wu, Z.; Guo, J.; Yao, X.; Chen, G.; Zhu, X. Analysis of explosion in enclosure based on improved method of images. Shock Waves 2017, 27, 237–245. [Google Scholar] [CrossRef]
- Adishchev, V.V.; Kornev, V.M. Calculation of the shells of explosion chambers. Fiz Goreniya Vzryva 1979, 15, 780–784. [Google Scholar] [CrossRef]
- Baker, W.E.; Cox, P.A.; Westine, P.S. Explosion Hazards and Evaluation, 1st ed.; Elsevier: Amsterdam, The Netherland, 1983. [Google Scholar]
- ANSYS; LSTC. LS-DYNA Keyword User’s Manual Volume II Material Models R11.0. Available online: http://ftp.lstc.com/anonymous/outgoing/jday/manuals/LS-DYNA_Manual_Volume_II_R11_Ver2.pdf (accessed on 19 February 2019).
- Cheng, D.S.; Hung, C.W.; Pi, S.J. Numerical simulation of near-field explosion. J. Appl. Sci. Eng. 2013, 16, 61–67. [Google Scholar]
- Mobaraki, B.; Vaghefi, M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion. Tunn. Undergr. Space Technol. 2015, 47, 114–122. [Google Scholar] [CrossRef]
- Hu, K.; Zhao, Y. Numerical simulation of internal gaseous explosion loading in large-scale cylindrical tanks with fixed roof. Thin-Walled Struct. 2016, 105, 16–28. [Google Scholar] [CrossRef]
ρ0/g·cm−3 | PCJ/GPa | vD/m·s−1 | A/GPa | B/GPa | R1 | R2 | ω | E0/GPa | V0 |
---|---|---|---|---|---|---|---|---|---|
1.50 | 17.92 | 6547.2 | 374.6 | 3.39 | 4.15 | 0.95 | 0.28 | 6.34 | 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Gu, W.; Wang, Z.; Han, Y. Study on Pressure Characteristics and Its Evolution Law at the Ellipsoidal End Cover Pole of Cylindrical Explosion Containment Vessels. Appl. Sci. 2020, 10, 3060. https://doi.org/10.3390/app10093060
Hu Y, Gu W, Wang Z, Han Y. Study on Pressure Characteristics and Its Evolution Law at the Ellipsoidal End Cover Pole of Cylindrical Explosion Containment Vessels. Applied Sciences. 2020; 10(9):3060. https://doi.org/10.3390/app10093060
Chicago/Turabian StyleHu, Yunhao, Wenbin Gu, Zhen Wang, and Yangming Han. 2020. "Study on Pressure Characteristics and Its Evolution Law at the Ellipsoidal End Cover Pole of Cylindrical Explosion Containment Vessels" Applied Sciences 10, no. 9: 3060. https://doi.org/10.3390/app10093060
APA StyleHu, Y., Gu, W., Wang, Z., & Han, Y. (2020). Study on Pressure Characteristics and Its Evolution Law at the Ellipsoidal End Cover Pole of Cylindrical Explosion Containment Vessels. Applied Sciences, 10(9), 3060. https://doi.org/10.3390/app10093060