Physicochemical and Microstructural Properties of Red Muds under Acidic and Alkaline Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Components and Physicochemical Properties of Red Mud in China
2.2. Test Procedures
3. Physicochemical Properties of Red Mud under Acidic and Alkaline Conditions
3.1. Variation in Limit Water Content
3.2. Variation in Specific Surface Area
4. Variation in The Main Metal Elements Under the Acidic and Alkaline Conditions
5. Microstructure of Red Mud under Acidic and Alkaline Conditions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, B.; Gostu, S. Materials sustainability for environment: Red-mud treatment. Front. Chem. Sci. Eng. 2017, 11, 483–496. [Google Scholar] [CrossRef]
- Klauber, C.; Gräfe, M.; Power, G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 2011, 108, 11–32. [Google Scholar] [CrossRef]
- Chu, J. Engineering characteristics of red mud and study on mixed stacking technique. China Mine Eng. 2011, 40, 44–47. [Google Scholar]
- Luo, M.; Qi, X.; Zhang, Y.; Ren, Y.; Tong, J.; Chen, Z.; Hou, Y.; Yeerkebai, N.; Wang, H.; Feng, S.-J.; et al. Study on dealkalization and settling performance of red mud. Environ. Sci. Pollut. Res. 2016, 24, 1794–1802. [Google Scholar] [CrossRef]
- Chen, B.; Chen, S. Complex utilization of red mud and its safety pile-up. Technol. Dev. Chem. Ind. 2006, 35, 32–35. [Google Scholar]
- Zhu, S.; Zhu, D.; Wang, X. Removal of fluorine from red mud (bauxite residue) by electrokinetics. Electrochim. Acta 2017, 242, 300–306. [Google Scholar] [CrossRef]
- Han, Y.-S.; Ji, S.; Lee, P.-K.; Oh, C. Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2. J. Hazard. Mater. 2017, 326, 87–93. [Google Scholar] [CrossRef]
- Senff, L.; Hotza, D.; Labrincha, J.A. Effect of red mud addition on the rheological behavior and on hardened state characteristics of cement mortars. Constr. Build. Mater. 2011, 25, 163–170. [Google Scholar] [CrossRef]
- Hua, Y.; Heal, K.; Friesl-Hanl, W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. J. Hazard. Mater. 2017, 325, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Verma, A.S.; Suri, N.M.; Kant, S. Applications of bauxite residue: A mini-review. Waste Manag. Res. 2017, 35, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumar, S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 2013, 38, 865–871. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, B. Development of unsintered construction materials from red mud wastes produced in the sintering alumina process. Constr. Build. Mater. 2008, 22, 2299–2307. [Google Scholar] [CrossRef]
- Kavas, T. Use of boron waste as a fluxing agent in production of red mud brick. Build. Environ. 2006, 41, 1779–1783. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, D.; Hou, J.; He, B.; Xiao, B. Preparation of glass-ceramics from red mud in the aluminium industries. Ceram. Int. 2008, 34, 125–130. [Google Scholar] [CrossRef]
- Bai, B.; Ren, Y.; Rao, D. The transport of solid particle suspension at different alkalinities in saturated porous media. J. Porous Media 2020, 23, 207–218. [Google Scholar] [CrossRef]
- Bai, B.; Rao, D.; Xu, T.; Chen, P. SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface. Int. J. Heat Mass Transf. 2018, 117, 517–526. [Google Scholar] [CrossRef]
- Rai, S.; Wasewar, K.; Agnihotri, A. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review. Waste Manag. Res. 2017, 35, 563–580. [Google Scholar] [CrossRef]
- Bai, B.; Wang, J.; Zhai, Z.; Xu, T. The Penetration Processes of Red Mud Filtrate in a Porous Medium by Seepage. Transp. Porous Media 2017, 117, 207–227. [Google Scholar] [CrossRef]
- Sahu, R.C.; Patel, R.K.; Ray, B.C. Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions. J. Hazard. Mater. 2010, 179, 1007–1013. [Google Scholar] [CrossRef]
- Kong, X.; Guo, Y.; Xue, S.; Hartley, W.; Wu, C.; Ye, Y.; Cheng, Q. Natural evolution of alkaline characteristics in bauxite residue. J. Clean. Prod. 2017, 143, 224–230. [Google Scholar] [CrossRef]
- Walshe, G.E.; Pang, L.; Flury, M.; Close, M.; Flintoft, M. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Res. 2010, 44, 1255–1269. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Long, F.; Rao, D.; Xu, T. The effect of temperature on the seepage transport of suspended particles in a porous medium. Hydrol. Process. 2016, 31, 382–393. [Google Scholar] [CrossRef]
- Bai, B.; Xu, T.; Nie, Q.; Li, P. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int. J. Heat Mass Transfer. 2020, 153, 119573. [Google Scholar] [CrossRef]
- Bai, B.; Rao, D.; Chang, T.; Guo, Z. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J. Hydrol. 2019, 578, 124080. [Google Scholar] [CrossRef]
- Bai, B.; Yang, G.-C.; Li, T.; Yang, G.-S. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials. Mech. Mater. 2019, 139, 103180. [Google Scholar] [CrossRef]
Chemical Composition | Sintering Process | Combined Process | ||||||
---|---|---|---|---|---|---|---|---|
Guizhou | Shanxi | Shandong | Henan | Average | Shanxi | Henan | Average | |
SiO2 | 25.9 | 21.4 | 22.0 | 21.4 | 22.7 | 20.6 | 20.5 | 20.6 |
TiO2 | 4.4 | 2.9 | 3.2 | 2.6 | 3.3 | 2.9 | 7.3 | 5.1 |
Al2O3 | 8.5 | 8.2 | 6.4 | 8.8 | 8.0 | 9.2 | 7.0 | 8.1 |
Fe2O3 | 5.0 | 8.1 | 9.0 | 8.6 | 7.7 | 8.1 | 8.1 | 8.1 |
NaOH | 11.1 | 8.0 | 11.7 | 16.3 | 11.8 | 8.1 | 8.3 | 8.2 |
CaO | 38.4 | 46.8 | 41.9 | 36.0 | 40.8 | 45.6 | 44.1 | 44.9 |
Na2O | 3.1 | 2.6 | 2.8 | 3.2 | 2.9 | 3.2 | 2.4 | 2.8 |
K2O | 0.2 | 0.2 | 0.3 | 0.8 | 0.4 | 0.2 | 0.5 | 0.4 |
MgO | 1.5 | 2.0 | 1.7 | 1.9 | 1.8 | 2.1 | 2.0 | 2.0 |
In total (%) | 98.1 | 100.0 | 99.0 | 99.6 | 99.3 | 100.0 | 100.0 | 100.0 |
Sintering Process | Bayer Process | |||
---|---|---|---|---|
Mineral Compositions | Mass Percentage (%) | Mineral Compositions | Mass Percentage (%) | |
Calcite | 26.0 | Hydrogarnet | 46.1 | |
Calcium orthosilicate | 25.0 | Hematite | 17.0 | |
Hydrated calcium | 15.0 | Perovskite | 13.6 | |
Hydrogarnet | 9.0 | Cancrinite | 12.3 | |
Hydrous ferric oxide | 7.0 | Diaspore | 2.0 | |
Nepheline | 7.0 | Illite | 2.0 | |
Sodium silicate hydrate | 5.0 | |||
Perovskite | 3.0 |
Type of Solution | Shanxi Silty Soil | Shanxi Red Mud | Shandong Red Mud |
---|---|---|---|
HCl solution (4 mol/L) | 18.89 | 13.798 | 60.492 |
Untreated | 28.432 | 8.906 | 22.931 |
NaOH solution (4 mol/L) | 1.670 | 5.737 | 8.530 |
Main Elements | HCL Solution Treatment | Untreated | NaOH Solution Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|
Shanxi Silty Soil | Shanxi Red Mud | Shandong Red Mud | Shanxi Silty Soil | Shanxi Red Mud | Shandong Red Mud | Shanxi Silty Soil | Shanxi Red Mud | Shandong Red Mud (28 Days) | |
Na | 0.52 | 1.9 | 0.92 | 0 | 7.83 | 8.87 | 9.42 | 14.23 | 15.88 |
Al | 5.78 | 9.11 | 5.52 | 6.53 | 10.04 | 9.63 | 5.22 | 8.99 | 9.64 |
Fe | 4.86 | 2.71 | 12.64 | 7.32 | 3.59 | 19.30 | 6.68 | 4.55 | 16.84 |
Ca | 4.14 | 11.75 | 1.1 | 4.94 | 11.64 | 0 | 2.06 | 10.34 | 0 |
Si | 18.38 | 7.01 | 4.06 | 19.66 | 9.09 | 8.24 | 19.72 | 7.67 | 8.15 |
Cl | 15.96 | 25.39 | 6.71 | 0 | 0 | 0 | 0.82 | 0 | 0.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Q.; Li, Y.; Wang, G.; Bai, B. Physicochemical and Microstructural Properties of Red Muds under Acidic and Alkaline Conditions. Appl. Sci. 2020, 10, 2993. https://doi.org/10.3390/app10092993
Nie Q, Li Y, Wang G, Bai B. Physicochemical and Microstructural Properties of Red Muds under Acidic and Alkaline Conditions. Applied Sciences. 2020; 10(9):2993. https://doi.org/10.3390/app10092993
Chicago/Turabian StyleNie, Qingke, Youdong Li, Guohui Wang, and Bing Bai. 2020. "Physicochemical and Microstructural Properties of Red Muds under Acidic and Alkaline Conditions" Applied Sciences 10, no. 9: 2993. https://doi.org/10.3390/app10092993
APA StyleNie, Q., Li, Y., Wang, G., & Bai, B. (2020). Physicochemical and Microstructural Properties of Red Muds under Acidic and Alkaline Conditions. Applied Sciences, 10(9), 2993. https://doi.org/10.3390/app10092993