Practical Adaptive Sliding-Mode Control Approach for Precise Tracking of Robot Manipulators
Abstract
:1. Introduction
2. Proposed SS-ASMC Approach
2.1. The Dynamics of Robot Manipulator
2.2. Control Design
3. Simulation
3.1. Simulation Setup
3.2. Simulation Description
- (1)
- It is well-known that the Coulomb friction accounts for nearly one-third of the maximum motor torque in the robot manipulator [31]. Moreover, the Coulomb friction leads to large TDE errors when the rotational direction of motor is changed at the moment [17]. Then, the effectiveness of the proposed SS-ASMC approach is evaluated on how to improve the nominal tracking performance through the robot manipulator.
- (2)
- The command angle trajectories of joints are being moving in the different phases, as shown in Figure 3, which are inherently shown in unmatched and matched disturbances, including the Coulomb friction.
- (Unmatched disturbances)
- −
- 0.3 s, 2 s, 4.3 s, 5.8 s, 7 s, 8.3 s
- (Matched disturbances)
- −
- 3 s, 9.5 s.
The effectiveness of the proposed SS-ASMC approach is simulated to verify its robustness against being adversely affected by such disturbances. - (3)
- As an external disturbances, additional payload is applied in joint 2 of the robot manipulator, i.e., the end-effector of the robot manipulator. In this case, the robust tracking performance of the proposed SS-ASMC approach is evaluated with or without the payload.
3.3. Simulation Result
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. How to Choose the TDC Gain
Appendix B. Proof of Theorem
Appendix C. Proof of Lemma
Appendix D. A Two-Link Planar Robot Manipulator System Model
Axis | Time | Mass | Length | Gravity | Friction |
---|---|---|---|---|---|
t (s) | m (kg) | l (mm) | g (m/) | ||
1 | 0 ∼ 5 | 12 | 200 | 9.81 | 70 |
2 | 0 ∼ 5 | 6 | 100 | 9.81 | 70 |
5 ∼ 10 | 4 | 100 | 9.81 | 70 |
Appendix E. Parameters of Both TDC Approach and ASMC Approach in the Simulation
References
- Piltan, F.; Yarmahmoudi, M.; Shamsodini, M.; Mazlomian, E.; Hosainpour, A. PUMA-560 robot manipulator position computed torque control methods using Matlab/Simulink and their integration into graduate nonlinear control and Matlab courses. Int. J. Robot. Autom. 2012, 3, 167–191. [Google Scholar]
- Shang, W.; Cong, S. Nonlinear computed torque control for a high-speed planar parallel manipulator. Mechatronics 2009, 19, 987–992. [Google Scholar]
- Banavar, R.N.; Dominic, P. An LQG/H∞ controller for a flexible manipulator. IEEE Trans. Control Syst. Technol. 1995, 3, 409–416. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, F.; Chen, W.; Lever, P. Optimal construction and control of flexible manipulators: a case study based on LQR output feedback. Mechatronics 2001, 11, 59–77. [Google Scholar]
- Siqueira, A.; Terra, M. A Fault-Tolerant Manipulator Robot Based on H2, H∞, and mixed H2H∞ markovian Controls. IEEE/ASME Trans. Mechatron. 2009, 14, 257–263. [Google Scholar] [CrossRef]
- Makarov, M.; Grossard, M.; Rodrguez-Ayerbe, P.; Dumur, D. Modeling and Preview H∞ Control Design for Motion Control of Elastic-Joint Robots With Uncertainties. IEEE Trans. Ind. Electron. 2016, 63, 6429–6438. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Levant, A. Sliding order and sliding accuracy in sliding mode control. Int. J. Control 1993, 58, 1247–1263. [Google Scholar] [CrossRef]
- Ferrara, A.; Incremona, G. Design of an integral suboptimal second-order sliding mode controller for the robust motion control of robot manipulators. IEEE Trans. Control Syst. Technol. 2015, 23, 2316–2325. [Google Scholar] [CrossRef] [Green Version]
- Fallaha, C.; Saad, M.; Kanaan, H.; Al-Haddad, K. Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 2011, 58, 600–610. [Google Scholar] [CrossRef]
- Barambones, O.; Alkorta, P. Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Trans. Ind. Electron. 2014, 61, 6556–6565. [Google Scholar] [CrossRef]
- Lee, H.; Utkin, V. Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 2007, 31, 179–188. [Google Scholar] [CrossRef]
- Tseng, M.; Chen, M. Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian J. Control 2010, 12, 392–398. [Google Scholar] [CrossRef]
- Huang, Y.; Kuo, T.; Chang, S. Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Trans. Syst. Man Cybern. Syst. 2008, 38, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Plestan, F.; Shtessel, Y.; Bregeault, V.; Poznyak, A. New methodologies for adaptive sliding mode control. Int. J. Control 2010, 83, 1907–1919. [Google Scholar] [CrossRef] [Green Version]
- Plestan, F.; Shtessel, Y.; Bregeault, V.; Poznyak, A. Sliding mode control with gain adaptation–application to an electropneumatic actuator. Control Eng. Prac. 2013, 21, 679–688. [Google Scholar] [CrossRef]
- Baek, J.; Jin, M.; Han, S. A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 2016, 63, 3628–3637. [Google Scholar] [CrossRef]
- Roy, S.; Kar, I.; Lee, J.; Jin, M. Adaptive-robust time-delay control for a class of uncertain Euler–Lagrange systems. IEEE Trans. Ind. Electron. 2017, 64, 7109–7119. [Google Scholar] [CrossRef]
- Baek, S.; Baek, J.; Han, S. An Adaptive sliding mode control with effective switching gain tuning near the sliding surface. IEEE Access 2019, 7, 15563–15572. [Google Scholar] [CrossRef]
- Nof, S. Handbook of Industrial Robotics; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Craig, J. Introduction to Robotics: Mechanics and Control; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Baek, J.; Kwon, W.; Kang, C. A new widely and stably adaptive sliding-mode control with nonsingular terminal sliding variable for robot manipulators. IEEE Access 2020, 8, 43443–43454. [Google Scholar] [CrossRef]
- Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin, Germany, 2016. [Google Scholar]
- Nicosia, S.; Tomei, P. Robot control by using only joint position measurements. IEEE Trans. Autom. Control 1990, 35, 1058–1061. [Google Scholar] [CrossRef]
- Baek, J.; Kwon, W.; Kim, B.; Han, S. A widely adaptive time-delayed control and its application to robot manipulators. IEEE Trans. Ind. Electron. 2019, 66, 5332–5342. [Google Scholar] [CrossRef]
- Jung, S.; Hsia, T.; Bonitz, R. Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 2004, 12, 474–483. [Google Scholar] [CrossRef]
- Baek, J.; Cho, S.; Han, S. Practical time-delay control with adaptive gains for trajectory tracking of robot manipulators. IEEE Trans. Ind. Electron. 2018, 65, 5682–5692. [Google Scholar] [CrossRef]
- Han, D.; Chang, P. Robust tracking of robot manipulator with nonlinear friction using time delay control with gradient estimator. J. Mech. Sci. Technol. 2010, 24, 1743–1752. [Google Scholar] [CrossRef]
- Chang, P.; Park, S. On improving time-delay control under certain hard nonlinearities. Mechatronics 2003, 13, 393–412. [Google Scholar] [CrossRef]
- Hsia, T. Simple robust schemes for cartesian space control of robot manipulators. Int. J. Robot. Autom. 1994, 9, 167–174. [Google Scholar]
- Armstrong, B. Friction: Experimental determination, modeling and compensation. In Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; pp. 1422–1427. [Google Scholar]
- Hsia, T.; Lasky, T.; Guo, Z. Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Ind. Electron. 1991, 38, 21–25. [Google Scholar] [CrossRef]
- Hangos, K.; Bokor, J.; Szederkényi, G. Analysis and Control of Nonlinear Process Systems; Springer: London, UK, 2006. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, J.; Kwon, W. Practical Adaptive Sliding-Mode Control Approach for Precise Tracking of Robot Manipulators. Appl. Sci. 2020, 10, 2909. https://doi.org/10.3390/app10082909
Baek J, Kwon W. Practical Adaptive Sliding-Mode Control Approach for Precise Tracking of Robot Manipulators. Applied Sciences. 2020; 10(8):2909. https://doi.org/10.3390/app10082909
Chicago/Turabian StyleBaek, Jaemin, and Wookyong Kwon. 2020. "Practical Adaptive Sliding-Mode Control Approach for Precise Tracking of Robot Manipulators" Applied Sciences 10, no. 8: 2909. https://doi.org/10.3390/app10082909
APA StyleBaek, J., & Kwon, W. (2020). Practical Adaptive Sliding-Mode Control Approach for Precise Tracking of Robot Manipulators. Applied Sciences, 10(8), 2909. https://doi.org/10.3390/app10082909