Performance Comparisons on Parallel Optimization of Atmospheric and Ocean Numerical Circulation Models Using KISTI Supercomputer Nurion System
Abstract
:1. Introduction
2. Experimental Configuration
3. Performance Evaluation of WRF
3.1. Ideal Experiment: WRF-LES
3.2. Real Experiment: WRF-NWP
4. Performance Evaluation of ROMS
4.1. Ideal Experiment: ROMS-Benchmark
4.2. Real Experiment: ROMS-NWP
5. Performance Evaluation of FVCOM
5.1. Ideal Experiment: FVCOM-Benchmark
5.2. Real Experiment: FVCOM-NWP
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sodani, A. Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor. In Proceedings of the IEEE Symposium on Hot Chips, Cupertino, CA, USA, 22–25 August 2015; pp. 1–24. [Google Scholar]
- Dell EMC Solutions. Application Performance of Intel Skylake and Intel Knights Landing Processors on Stampede2; Dell EMC Solutions: Round Rock, TX, USA, 2018; pp. 1–11. [Google Scholar]
- Cho, J.-Y.; Jin, H.-W.; Nam, D. Using the On-Package Memory of Manycore Processor for Improving Performance of MPI Intra-Node Communication. J. Kiise 2017, 44, 124–131, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Butcher, N.; Oliver, S.L.; Berry, J.; Hammond, S.D.; Kogge, P.M. Optimizing for KNL Usage Modes When Data Doesn’t Fit in MCDRAM. In Proceedings of the 47th International Conference on Parallel Processing, Eugene, OR, USA, 13–16 August 2018; pp. 1–10. [Google Scholar]
- Rho, S.; Kim, S.; Nam, D.; Park, D.; Kim, J.-S. Enhancing the Performance of Multiple Parallel Applications using Heterogeneous Memory on the Intel’s Next-Generation Many-core Processor. J. Kiise 2017, 44, 878–886, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Yoon, J.W.; Song, U.-S. System Characteristics and Performance Analysis in Multi and Many-core Architectures. J. Digit. Contents Soc. 2019, 22, 597–603, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Ooyama, K.V. A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci. 1990, 47, 2580–2593. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN/475+STR. 2008. Available online: http://dx.doi.org/10.5065/D68S4MVH (accessed on 1 July 2019).
- Smagorinsky, J. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 1963, 91, 99. [Google Scholar] [CrossRef]
- Deardorff, J.W. Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteorol. 1974, 7, 81. [Google Scholar] [CrossRef]
- Catalano, F.; Moeng, C.-H. Large-Eddy Simulation of the Daytime Boundary Layer in an Idealized Valley Using the Weather Research and Forecasting Numerical Model. Bound.-Layer Meteorol. 2010, 137, 49–75. [Google Scholar] [CrossRef] [Green Version]
- Moeng, C.-H.; Dudhia, J.; Klemp, J. Examining Two-Way Nesting for Large Eddy Simulation of the PBL Using the WRF Model. Mon. Weather Rev. 2007, 135, 2295–2311. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split explicit, free surface, topography following coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- NOAA. ETOPO2, 2-Minute Gridded Global Relied Data; National Geophysical Data Center; NOAA: Boulder, CO, USA, 2006. Available online: http://www.ngdc.noaa.gov/mgg/global/etopo2.html (accessed on 1 July 2019).
- Chen, C.; Beardsley, R.C.; Cowles, G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.-N. Digital 30 sec gridded bathymetric data of Korea marginal seas—KorBathy30s. J. Korean Soc. Coast. Ocean Eng. 2008, 20, 110–120, (In Korean with English abstract). [Google Scholar]
- Amante, C.; Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; Technical Memorandum NESDIS NGDC-24; NOAA: Boulder, CO, USA, 2009. Available online: http://www.ngdc.noaa.gov/mgg/global/global.html (accessed on 1 July 2019).
Category | KNL | SKL | CLS |
---|---|---|---|
Manufacturer and model | Intel Xeon Phi 7250 KnightsLanding | Intel Xeon 6148 Skylake | Intel Xeon Gold 6140 |
Number of nodes | 8305 | 132 | 16 |
CPU × cores per node | 1 × 68 = 68 | 2 × 20 = 40 | 2 × 18 = 36 |
Clock speed | 1.4 GHz | 2.4 GHz | 2.3 GHz |
Main Memory | 16 GB (MCDRAM), 96 GB | 192 GB | 252 GB |
File System | Lustre | Lustre | Lustre |
Compiler | Intel v17.0.5 Intel v19.0.4 | Intel v17.0.5 Intel v19.0.4 | Intel 18.0.4 |
MPI Library | openmpi v3.1.0 impi v19.0.4 | openmpi v3.1.0 impi v19.0.4 | openmpi v3.1.1 |
NetCDF Library | netcdf v4.6.1 | netcdf v4.6.1 | netcdf v4.4.4 |
Compiler Options | -fp-model consistent -ip–O3–no–prec–div -static-intel -xMIC-AVX512 | -fp-model consistent -ip–O3–no–prec–div -static-intel -xCORE-AVX512 | -fp-model consistent -ip–O3–no–prec–div -static -intel |
Ideal Experiments (Case: Grid Resolution) | Real Experiments | |
---|---|---|
WRF | Large Eddy Simulation : (3200 × 3200) grids × 10 layers | NWP, Typhoon Soulik and Cimaron : (2048 × 2048) grids × 33 layers |
ROMS | Benchmark : (8192 × 1024) grids × 30 layers | NWP, Typhoon Soulik and Cimaron : (2048 × 2048) grids × 33 layers |
FVCOM | Benchmark : 10,398,925 nodes × 31 layers | NWP, Tide case : 8,369,391 nodes × 10 layers |
Experiment | KNL | CLS | SKL |
---|---|---|---|
128 cores | 16n × 8c (W-ir), 8n × 16c (W-ir) 4n × 32c (R&F-r), 2n × 64c (W-ir, R&F-i) | 4n × 32c (W&R&F-ir) | 4n × 32c (W&R&F-ir) |
256 cores | 32n × 8c (W-ir), 16n × 16c (W-ir) 8n × 32c (R&F-r), 4n × 64c (W-ir, R&F-i) | 8n × 32c (W&R&F-ir) | 8n × 32c (W&R&F-ir) |
512 cores | 64n × 8c (W-ir), 32n × 16c (W-ir) 16n × 32c (R&F-r), 8n × 64c (W-ir, R&F-i) | 16n × 32c (W&R&F-ir) | 16n × 32c (W&R&F-ir) |
1024 cores | 128n × 8c (W-ir), 64n × 16c (W-ir) 32n × 32c (R&F-r), 16n × 64c (W-ir, R&F-i) | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.; Kim, D.-H.; Woo, S.-B.; Joh, M.; An, J.; Moon, I.-J. Performance Comparisons on Parallel Optimization of Atmospheric and Ocean Numerical Circulation Models Using KISTI Supercomputer Nurion System. Appl. Sci. 2020, 10, 2883. https://doi.org/10.3390/app10082883
Lim C, Kim D-H, Woo S-B, Joh M, An J, Moon I-J. Performance Comparisons on Parallel Optimization of Atmospheric and Ocean Numerical Circulation Models Using KISTI Supercomputer Nurion System. Applied Sciences. 2020; 10(8):2883. https://doi.org/10.3390/app10082883
Chicago/Turabian StyleLim, Chaewook, Dong-Hoon Kim, Seung-Buhm Woo, Minsu Joh, Jooneun An, and Il-Ju Moon. 2020. "Performance Comparisons on Parallel Optimization of Atmospheric and Ocean Numerical Circulation Models Using KISTI Supercomputer Nurion System" Applied Sciences 10, no. 8: 2883. https://doi.org/10.3390/app10082883
APA StyleLim, C., Kim, D.-H., Woo, S.-B., Joh, M., An, J., & Moon, I.-J. (2020). Performance Comparisons on Parallel Optimization of Atmospheric and Ocean Numerical Circulation Models Using KISTI Supercomputer Nurion System. Applied Sciences, 10(8), 2883. https://doi.org/10.3390/app10082883