Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea)
Abstract
:Featured Application
Abstract
1. Introduction
2. Geological and Volcanological Setting of the Changbaishan Volcano
3. Analytical Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, C.J.N. The Taupo eruption, New Zealand II. The Taupo Ignimbrite. Philos. Trans. R. Soc. Lond. Ser. A 1985, 314, 229–310. [Google Scholar]
- Valentine, G.A.; Wohletz, K.H.; Kieffer, S.W. Sources of unsteady column dynamics in pyroclastic flow eruptions. J. Geophys. Res. 1991, 96, 21887–21892. [Google Scholar] [CrossRef] [Green Version]
- Branney, M.J.; Kokelaar, B.P. Pyroclastic density currents and the sedimentation of ignimbrites. Mem. Geol. Soc. Lond. 2002, 27, 143. [Google Scholar]
- Druitt, T.H. Emplacement of the 18 May, 1980 lateral blast deposit east-northeast of Mount St. Helens, Washington. Bull. Volcanol. 1992, 54, 554–572. [Google Scholar] [CrossRef]
- Dufek, J. The fluid mechanics of pyroclastic density currents. Annu. Rev. Fluid Mech. 2016, 48, 459–485. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Wilson, L. Theoretical modelling of the generation, movement and emplacement of pyroclastic flows by column collapse. J. Geophys. Res. 1978, B83, 1727–1739. [Google Scholar] [CrossRef]
- Valentine, G.A.; Wohletz, K.H. Numerical models of Plinian eruption columns and pyroclastic flows. J. Geophys. Res. 1989, 94, 1867–1887. [Google Scholar] [CrossRef]
- Hoblitt, R.P. Observations of the eruptions of July 22 and August 7, 1980 at Mount St Helens, Washington. U.S. Geol. Surv. Prof. Pap. 1986, 44, 1335. [Google Scholar]
- Di Roberto, A.; Bertagnini, A.; Pompilio, M.; Bisson, M. Pyroclastic density currents at Stromboli volcano (Aeolian Islands, Italy): A case study of the 1930 eruption. Bull. Volcanol. 2014, 76, 827. [Google Scholar] [CrossRef]
- Houghton, B.F.; Wilson, C.J.N.; Fierstein, J.; Hildreth, W. Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska. Bull. Volcanol. 2004, 66, 95–133. [Google Scholar] [CrossRef]
- Komorowski, J.-C.; Jenkins, S.; Baxter, P.J.; Picquot, A.; Lavigne, F.; Charbonnier, S.; Gertisser, R.; Preece, K.; Cholik, N.; Budi-Santoso, A. Paroxysmal dome explosion during the Merapi 2010 eruption processes and facies relationships of associated high-energy pyroclastic density currents. J. Volcanol. Geotherm. Res. 2013, 261, 260–294. [Google Scholar] [CrossRef]
- Nairn, I.A.; Self, S. Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975. J. Volcanol. Geotherm. Res. 1978, 3, 39–60. [Google Scholar] [CrossRef]
- Dufek, J.; Bergantz, G.W. Suspended load and bed-load transport of particle-laden gravity currents: The role of particle-bed interaction. Comp. Fluid Dyn. 2007, 21, 119–145. [Google Scholar] [CrossRef]
- Roche, O. Depositional processes and gas pore pressure in pyroclastic flows: An experimental perspective. Bull. Volcanol. 2012, 74, 1807–1820. [Google Scholar] [CrossRef]
- Esposti-Ongaro, T.; Clarke, A.B.; Voight, B.; Neri, A.; Widiwijayanti, C. Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens. J. Geophys. Res. 2012, 117, B06208. [Google Scholar] [CrossRef]
- Andrews, B.J. Dispersal and air entrainment in unconfined dilute pyroclastic density currents. Bull. Volcanol. 2014, 76, 852. [Google Scholar] [CrossRef]
- Breard, E.; Lube, G. Inside pyroclastic density currents–uncovering the enigmatic flow structure and transport behaviour in large-scale experiments. Earth Planet. Sci. Lett. 2017, 458, 22–36. [Google Scholar] [CrossRef]
- Auker, M.R.; Sparks, R.S.J.; Siebert, L.; Crosweller, H.S.; Ewert, J. A statistical analysis of the global historical volcanic fatalities record. J. Appl. Volcanol. 2013, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.K.; Jenkins, S.F.; Sparks, R.S.J.; Odbert, H.; Auker, M.R. Volcanic fatalities database: Analysis of volcanic threat with distance and victim classification. J. Appl. Volcanol. 2017, 6, 15. [Google Scholar] [CrossRef]
- Kelfoun, K.; Druitt, T.H. Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J. Geophys. Res. 2005, 110, 1–13. [Google Scholar] [CrossRef]
- Iverson, R.M.; Schilling, S.P.; Vallance, J.W. Objective delineation of lahar-inundation hazard zones. Geol. Soc. Am. Bull. 1998, 110, 972–984. [Google Scholar] [CrossRef]
- Pitman, E.B.; Nichita, C.C.; Sheridan, M.F.; Patra, A.K.; Bauer, A.C.; Bursik, M.I. Computing granular avalanches and landslides. Phys. Fluids 2003, 15, 3638. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.C.; Sheridan, M.F. Computer-assisted mapping of pyroclastic surges. Science 1982, 217, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Ogburn, S.E.; Calder, E.S. The relative effectiveness of empirical and physical models for simulating pyroclastic density currents under different emplacement conditions. Front. Earth Sci. 2017, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Ogburn, S.E. Flowdat—Mass Flow Database: Vhub Database; 2012 (Virginia, USA). Available online: https://vhub.org/groups/massflowdatabase (accessed on 12 December 2019).
- Ui, T. Volcanic dry avalanche deposits-Identification and comparison with non-volcanic debris stream deposits. J. Volcanol. Geotherm. Res. 1983, 18, 135–150. [Google Scholar] [CrossRef]
- Hayashi, J.N.; Self, S. A comparison of pyroclastic flow and debris avalanche mobility. J. Geophys. Res. 1992, 97B6, 9063–9071. [Google Scholar] [CrossRef]
- Sheridan, M.F.; Macías, J.L. Estimation of risk probability for gravity-driven pyroclastic flows at Volcán Colima, México. J. Volcanol. Geotherm. Res. 1995, 66, 251–256. [Google Scholar] [CrossRef]
- Takarada, S. The volcanic hazards assessment support system for the online hazard assessment and risk mitigation of Quaternary volcanoes in the world. Front. Earth Sci. 2017, 5, 102. [Google Scholar] [CrossRef]
- Alberico, I.; Lirer, L.; Petrosino, P.; Scandone, R. A methodology for the evaluation of long-term volcanic risk from pyroclastic fows in Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 2002, 116, 63–78. [Google Scholar] [CrossRef]
- Tierz, P.; Sandri, L.; Costa, A.; Zaccarelli, L.; Di Vito, M.A.; Sulpizio, R.; Marzocchi, W. Suitability of energy cone for probabilistic volcanic hazard assessment: Validation tests at Somma-Vesuvius and Campi Flegrei (Italy). Bull. Volcanol. 2016, 78, 79. [Google Scholar] [CrossRef]
- Ogburn, S.E.; Berger, J.; Calder, E.S.; Lopes, D.; Patra, A.; Pitman, E.B.; Rutarindwa, R.; Spiller, E.; Wolpert, R.L. Pooling strength amongst limited datasets using hierarchical Bayesian analysis, with application to pyroclastic density current mobility metrics. Stat. Volcanol. 2016, 2, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, C.; Wacker, L.; Xu, J.; Galván, J.D.; Stoffel, M.; Guillet, S.; Corona, C.; Sigl, M.; Di Cosmo, N.; Hajdas, I.; et al. Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Quat. Sci. Rev. 2017, 158, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Horn, S.; Schmincke, H.U. Volatile emission during the eruption of Baitoushan volcano (China/North Korea) ca. 969 AD. Bull. Volcanol. 2000, 61, 537–555. [Google Scholar] [CrossRef]
- Zou, H.; Fan, Q.; Zhang, H. Rapid development of the great Millennium eruption of Changbaishan (Tianchi) Volcano, China/North Korea: Evidence from U-Th zircon dating. Lithos 2010, 119, 289–296. [Google Scholar] [CrossRef]
- Wei, H.; Liu, G.; Gill, J. Review of eruption activity at Tianchi volcano, Changbaishan, northeast China: Implications for possible future eruptions. Bull. Volcanol. 2013, 75, 705–719. [Google Scholar] [CrossRef]
- Pan, B.; de Silva, S.L.; Xu, J.; Chen, Z.; Miggins, D.P.; Wei, H. The VEI-7 Millennium eruption, Changbaishan-Tianchi volcano, China/DPRK: New field, petrological, and chemical constraints on stratigraphy, volcanology, and magma dynamics. J. Volcanol. Geotherm. Res. 2017, 343, 45–59. [Google Scholar] [CrossRef]
- Xu, J.; Liu, G.; Wu, J.; Ming, Y.; Wang, Q.; Cui, D.; Shangguan, Z.; Pan, B.; Lin, X.; Liu, J. Recent unrest of Changbaishan volcano, Northeast China: A precursor of a future eruption. Geophys. Res. Lett. 2012, 39, L16305. [Google Scholar] [CrossRef] [Green Version]
- Bonadon na, C.; Costa, A. Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull. Volcanol. 2013, 75, 742. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Sparks, R.S.J.; Liu, R.; Fan, Q.; Wang, Y.; Hong, H.; Zhang, H.; Chen, H.; Jiang, C.; Dong, J.; et al. Three active volcanoes in China and their hazards. J. Asian Earth Sci. 2003, 21, 515–526. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Z.; Liu, J.; Liu, G.; Zhang, L.; Lei, M.; Zhao, W.; Ma, L.; Sepe, V.; Ventura, G. The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth Sci. Rev. 2018, 187, 19–52. [Google Scholar] [CrossRef]
- Liu, R.; Wei, H.; Li, J. The Recent Eruptions of Changbaishan Tianchi Volcano; Science Press: Beijing, China, 1998; pp. 1–159. (In Chinese) [Google Scholar]
- Fan, Q.; Sui, J.; Wang, T.; Li, N.; Sun, Q. History of volcanic activity, magma evolution and eruptive mechanisms of the Changbai volcanic province. Geol. J. China Univ. 2007, 13, 175–190, (In Chinese with English abstract). [Google Scholar]
- Wei, H.; Wang, Y.; Jin, J.; Gao, L.; Yun, S.-H.; Jin, B. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan. Northeast China. Lithos 2007, 96, 315–324. [Google Scholar] [CrossRef]
- Cui, Z.; Wei, H.; Liu, R. A Textual Research on the Historic Records of the Eruptions from Tianchi Volcano, Changbaishan. In Connection of Volcanism and Human Environment; Liu, R., Ed.; Seismic Press: Beijing, China, 1995; pp. 36–39. [Google Scholar]
- Zhao, B.; Xu, J.; Lin, C. Study of distal pyroclastic-flow stratum from Tianchi volcano in 1215±15 eruption pyroclastic-flow over water. Acta Geol. Sin. Engl. 2013, 87, 73–81. [Google Scholar]
- Yang, L.; Wang, F.; Feng, H.; Wu, L.; Shi, W. 40Ar/39Ar geochronology of Holocene volcanic activity at Changbaishan Tianchi volcano, Northeast China. Quat. Geochronol. 2014, 21, 106–114. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; You, H.; Nemeth, K. Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene. Quat. Sci. Rev. 2017, 177, 104–119. [Google Scholar] [CrossRef]
- Sun, C.; Wang, L.; Plunkett, G.; You, H.; Zhu, Z.; Zhang, L.; Zhang, B.; Chu, G.; Liu, J. Ash from the Changbaishan Qixiangzhan eruption: A new early Holocene marker horizon across East Asia. J. Geophys. Res. Solid Earth 2018, 123, 6442–6450. [Google Scholar] [CrossRef]
- McLean, D.; Albert, P.G.; Nakagawa, T.; Staff, R.A.; Suzuki, T.; Suigetsu Smith, V.C. Identification of the Changbaishan “Millennium” (B-Tm) eruption deposit in the Lake Suigetsu (SG06) sedimentary archive, Japan: Synchronisation of hemispheric-wide palaeoclimate archives. Quat. Sci. Rev. 2016, 150, 301–307. [Google Scholar] [CrossRef]
- Liu, X.; Xiang, T. Cenozoic Volcanoes and Pyroclastic Deposits in Northeastern China: Resources and Hazards; Jilin Univ Publishing House: Changchun, China, 1997; p. 161. (In Chinese) [Google Scholar]
- Choi, S.; Oh, C.W.; Gotze, H.J. Three-dimensional density modeling of the EGM2008 gravity field over the Mount Paekdu volcanic area. J. Geophys. Res. Solid Earth 2013, 118, 3820–3836. [Google Scholar] [CrossRef]
- Wu, J.; Ming, Y.; Fang, L.; Wang, W. S-wave velocity structure beneath Changbaishan volcano inferred from receiver function. Earthq Sci. 2009, 22, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Hong, H.; Sparks, R.S.J.; Walder, J.S.; Han, B. Potential hazards of eruptions around the Tianchi caldera lake, China. Acta Geol. Sin. 2004, 78, 790–794. [Google Scholar]
- Dai, L.; Wang, Y.; Lewis, B.J.; Xu, D.; Zhou, L.; Gu, X.; Jiang, L. The trend of land-use sustainability around the Changbai Mountain Biosphere Reserve in northeastern China: 1977–2007. Int. J. Sust. Dev. World 2012, 19, 369–377. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Popul. Census 2010. 2012. Available online: https://www.stats.gov.cn (accessed on 23 April 2013). (In Chinese)
- Lee, S.-H.; Jang, E.-S.; Lee, H.-M. A case analysis of volcanic ash dispersion under various volcanic explosivity index of the Mt. Baegdu. J. Korean Earth Sci. Soc. 2012, 33, 280–293. (In Korean) [Google Scholar] [CrossRef]
- Yu, H.; Xu, J.; Luan, P.; Zhao, B.; Pan, B. Probabilistic assessment of tephra fallout hazard at Changbaishan volcano, Northeast China. Nat. Hazards 2013, 69, 1369–1388. [Google Scholar] [CrossRef]
- Yu, S.; Yoon, S.M.; Choi, E.K.; Kim, S.D.; Lee, Y.J.; Lee, Y.; Choi, K.H. Quantitative assessment of national resilience: A case study of Mount Paektu eruption scenarios on South Korea. Int. J. Disast Risk Reduct. 2016, 19, 118–132. [Google Scholar] [CrossRef]
- Yun, S.H.; Lee, J.H.; Kim, S.K.; Chang, C.W.; Cho, E.; Yang, I.S.; Kim, Y.J.; Kim, S.H.; Lee, K.H.; Kim, S.W.; et al. TITAN2D simulations of pyroclastic flows from small scale eruption at Mt. Baekdusan. J. Korean Earth Sci. Soc. 2013, 34, 615–625, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Paone, A.; Yun, S.-H. Pyroclastic Density Current Hazards at the Baekdusan Volcano, Korea: Analyses of Several Scenarios from a Small-Case to the Worst-Case Colossal Eruption. In Updates in Volcanology-From Volcano Modelling to Volcano Geology; InTech press: London, UK, 2016. [Google Scholar]
- Heim, A. Bergsturz und Menschenleben; Fretz und Wasmuth: Zurich, Switzerland, 1932; Volume 218. (In German) [Google Scholar]
- Newhall, C.G.; Self, S. The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 1992, 87, 1231–1238. [Google Scholar] [CrossRef]
- Mastin, L.G.; Guffanti, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.W.; Neri, A.; Rose, W.I.; et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 2009, 186, 10–21. [Google Scholar] [CrossRef]
- Cioni, R.; Bertagnini, A.; Santacroce, R.; Andronico, D. Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): Towards a new classification scheme. J. Volcanol. Geotherm. Res. 2008, 178, 331–346. [Google Scholar] [CrossRef]
- Németh, K. Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In: E. Cañón-Tapia and A. Szakács (Editors), What is a volcano? Geol. Soc. Am. 2010, 470, 43–66. [Google Scholar]
- Neri, M.; Le Cozannet, G.; Thierry, P.; Bignami, C.; Ruch, J. A method for multi-hazard mapping in poorly known volcanic areas: An example from Kanlaon (Philippines). Nat. Hazards Earth Syst. Sci. 2013, 13, 1929–1943. [Google Scholar] [CrossRef] [Green Version]
- Németh, K.; Kereszturi, G. Monogenetic volcanism: Personal views and discussion. Int. J. Earth Sci. 2015, 104, 2131–2146. [Google Scholar] [CrossRef]
Scenario | Ht (m) | ΔH/L Min | ΔH/L Med | ΔH/L Max |
---|---|---|---|---|
1 | 3000 | 0.19 | 0.30 | 0.40 |
2 | 10,000 | 0.14 | 0.22 | 0.30 |
3 | 20,000 | 0.10 | 0.16 | 0.22 |
4 | 30,000 | 0.06 | 0.11 | 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, A.M.; Del Gaudio, P.; Guo, Z.; Zhang, M.; Liu, G.; Sepe, V.; Liu, J.; Ventura, G. Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Appl. Sci. 2020, 10, 2622. https://doi.org/10.3390/app10072622
Lombardi AM, Del Gaudio P, Guo Z, Zhang M, Liu G, Sepe V, Liu J, Ventura G. Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Applied Sciences. 2020; 10(7):2622. https://doi.org/10.3390/app10072622
Chicago/Turabian StyleLombardi, Anna Maria, Pierdomenico Del Gaudio, Zhengfu Guo, Maoliang Zhang, Guoming Liu, Vincenzo Sepe, Jiaqi Liu, and Guido Ventura. 2020. "Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea)" Applied Sciences 10, no. 7: 2622. https://doi.org/10.3390/app10072622
APA StyleLombardi, A. M., Del Gaudio, P., Guo, Z., Zhang, M., Liu, G., Sepe, V., Liu, J., & Ventura, G. (2020). Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Applied Sciences, 10(7), 2622. https://doi.org/10.3390/app10072622