Mg–Al-Layered Double Hydroxide (LDH) Modified Diatoms for Highly Efficient Removal of Congo Red from Aqueous Solution
Abstract
:1. Introduction
2. Experimental
2.1. Material and Methods
2.2. Synthesis of Mg–Al LDH Modified Diatom
2.3. Adsorption Experiment
3. Results and Discussion
3.1. Structural and Chemical Characterization
3.2. Adsorption Performances of DE and DE-LDH
3.2.1. Effect of pH
3.2.2. Effect of Adsorbent Dosage
3.2.3. Effect of Dye Concentration
3.2.4. Effect of Contact Time
3.2.5. Adsorption Isotherms
3.2.6. Adsorption Kinetics
3.2.7. Mechanism of CR Adsorption on DE-LDH
3.2.8. Selectivity Studies for Removal of CR
3.2.9. Effect of Salt
3.2.10. Reusability Study
3.2.11. Comparison with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aliabadi, R.S.; Mahmoodi, N.O. Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes; sunset yellow and Congo red. J. Clean. Prod. 2018, 179, 235–245. [Google Scholar] [CrossRef]
- Miandad, R.; Kumar, R.; Barakat, M.A.; Basheer, C.; Aburiazaiza, A.S.; Nizami, A.S.; Rehan, M. Untapped conversion of plastic waste char into carbon-metal LDOs for the adsorption of Congo red. J. Colloid Interface Sci. 2018, 511, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.H.; Rai, B.N.; Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Karimifard, S.; Moghaddam, M.R. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Sci. Total Environ. 2018, 640–641, 772–797. [Google Scholar] [CrossRef]
- Sriram, G.; Uthappa, U.T.; Rego, R.M.; Kigga, M.; Kumeria, T.; Jung, H.Y.; Kurkuri, M.D. Ceria decorated porous diatom-xerogel as an effective adsorbent for the efficient removal of Eriochrome Black T. Chemosphere 2020, 238, 124692. [Google Scholar] [CrossRef]
- Sadegh, H.; Ali, G.A.; Gupta, V.K.; Makhlouf, A.S.; Shahryari-ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kabiri, S.; Kurkuri, M.D.; Kumeria, T.; Losic, D. Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection. RSC Adv. 2014, 4, 15276–15280. [Google Scholar] [CrossRef]
- Bariana, M.; Aw, M.S.; Kurkuri, M.; Losic, D. Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int. J. Pharm. 2013, 443, 230–241. [Google Scholar] [CrossRef]
- Uthappa, U.T.; Sriram, G.; Brahmkhatri, V.; Kigga, M.; Jung, H.Y.; Altalhi, T.; Neelgund, G.M.; Kurkuri, M.D. Xerogel modified diatomaceous earth microparticles for controlled drug release studies. New J. Chem. 2018, 42, 11964–11971. [Google Scholar] [CrossRef]
- Uthappa, U.T.; Brahmkhatri, V.; Sriram, G.; Jung, H.Y.; Yu, J.; Kurkuri, N.; Aminabhavi, T.M.; Altalhi, T.; Neelgund, G.M.; Kurkuri, M.D. Nature engineered diatom biosilica as drug delivery systems. J. Control. Release 2018, 281, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Uthappa, U.T.; Kigga, M.; Sriram, G.; Ajeya, K.V.; Jung, H.Y.; Neelgund, G.M.; Kurkuri, M.D. Facile green synthetic approach of bio inspired polydopamine coated diatoms as a drug vehicle for controlled drug release and active catalyst for dye degradation. Microporous Mesoporous Mater. 2019, 288, 109572. [Google Scholar] [CrossRef]
- Rea, I.; Terracciano, M.; De Stefano, L. Synthetic vs. Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices. Adv. Healthc. Mater. 2017, 6, 1601125. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhang, J.; Shi, H.; Li, N.; Ping, Q. Adsorption of Malachite Green by Diatomite: Equilibrium Isotherms and Kinetic Studies. J. Dispers. Sci. Technol. 2016, 37, 1059–1066. [Google Scholar] [CrossRef]
- Patil, P.; Bhat, M.P.; Gatti, M.G.; Kabiri, S.; Altalhi, T.; Jung, H.Y.; Losic, D.; Kurkuri, M. Chemodosimeter functionalized diatomaceous earth particles for visual detection and removal of trace mercury ions from water. Chem. Eng. J. 2017, 327, 725–733. [Google Scholar] [CrossRef]
- Sriram, G.; Uthappa, U.T.; Kigga, M.; Jung, H.Y.; Altalhi, T.; Brahmkhatri, V.; Kurkuri, M.D. Xerogel activated diatoms as an effective hybrid adsorbent for the efficient removal of malachite green. New J. Chem. 2019, 43, 3810–3820. [Google Scholar] [CrossRef]
- Sriram, G.; Bhat, M.P.; Kigga, M.; Uthappa, U.T.; Jung, H.Y.; Kumeria, T.; Kurkuri, M.D. Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye. Mater. Chem. Phys. 2019, 235, 121738. [Google Scholar] [CrossRef]
- Chuang, Y.H.; Tzou, Y.M.; Wang, M.K.; Liu, C.H.; Chiang, P.N. Removal of 2-Chlorophenol from Aqueous Solution by Mg/Al Layered Double Hydroxide (LDH) and Modified LDH. Ind. Eng. Chem. Res. 2008, 47, 3813–3819. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Meng, L. Adsorption of Methyl Orange from Aqueous Solution on Hydrothermal Synthesized Mg–Al Layered Double Hydroxide. J. Chem. Eng. Data 2011, 56, 4217–4225. [Google Scholar] [CrossRef]
- Chen, C.; Gunawan, P.; Xu, R. Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water. J. Mater. Chem. 2011, 21, 1218–1225. [Google Scholar] [CrossRef]
- Somosi, Z.; Muráth, S.; Nagy, P.; Sebők, D.; Szilagyi, I.; Douglas, G. Contaminant removal by efficient separation of in situ formed layered double hydroxide compounds from mine wastewaters. Environ. Sci. Water Res. Technol. 2019, 5, 2251–2259. [Google Scholar] [CrossRef]
- Hu, H.; Liu, J.; Xu, Z.; Zhang, L.; Cheng, B.; Ho, W. Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Appl. Surf. Sci. 2019, 478, 981–990. [Google Scholar] [CrossRef]
- Aw, M.S.; Simovic, S.; Addai-Mensah, J.; Losic, D. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine 2011, 6, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, P.; Lim, T.T.; Liu, L.; Liu, S.; Xu, R. A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals from water. J. Mater. Chem. A 2013, 1, 3877–3880. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, Q.; Lu, C.; Li, Z.; Wang, W. Layered double hydroxide-carbon dot composite: High-performance adsorbent for removal of anionic organic dye. ACS Appl. Mater. Interfaces 2014, 6, 20225–20233. [Google Scholar] [CrossRef] [PubMed]
- Sprynskyy, M.; Pomastowski, P.; Hornowska, M.; Król, A.; Rafińska, K.; Buszewski, B. Naturally organic functionalized 3D biosilica from diatom microalgae. Mater. Des. 2017, 132, 22–29. [Google Scholar] [CrossRef]
- Yao, W.; Yu, S.; Wang, J.; Zou, Y.; Lu, S.; Ai, Y.; Alharbi, N.S.; Alsaedi, A.; Hayat, T.; Wang, X. Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides. Chem. Eng. J. 2017, 307, 476–486. [Google Scholar] [CrossRef]
- Xu, J.; Xu, D.; Zhu, B.; Cheng, B.; Jiang, C. Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. Appl. Surf. Sci. 2018, 435, 1136–1142. [Google Scholar] [CrossRef]
- Peng, H.H.; Chen, J.; Li, M.; Feng, L.; Losic, D.; Dong, F.; Zhang, Y.X. Synergistic effect of manganese dioxide and diatomite for fast decolorization and high removal capacity of methyl orange. J. Colloid Interface Sci. 2016, 484, 1–9. [Google Scholar] [CrossRef]
- Nayunigari, M.K.; Das, R.; Maity, A.; Agarwal, S.; Gupta, V.K. Folic acid modified cross-linked cationic polymer: Synthesis, characterization and application of the removal of Congo red dye from aqueous medium. J. Mol. Liq. 2017, 227, 87–97. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, M.; Mao, L.; Xu, D.; Zeng, G.; Huang, H.; Jiang, R.; Deng, F.; Zhang, X.; Wei, Y. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. J. Colloid Interface Sci. 2017, 499, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Q.; Liu, Z.H. Excellent adsorption performance for Congo red on hierarchical porous magnesium borate microsphere prepared by a template-free hydrothermal method. J. Taiwan Inst. Chem. Eng. 2018, 86, 92–100. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Kim, D.S. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Ecotoxicol. Environ. Saf. 2017, 141, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, X.; Li, J.; Wang, L.; Jin, W.; Pei, Y.; Tang, K. Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int. J. Biol. Macromol. 2018, 107, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Lafi, R.; Charradi, K.; Djebbi, M.A.; Amara, A.B.; Hafiane, A. Adsorption study of Congo red dye from aqueous solution to Mg–Al–layered double hydroxide. Adv. Powder Technol. 2016, 27, 232–237. [Google Scholar] [CrossRef]
- Afkhami, A.; Moosavi, R. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 2010, 174, 398–403. [Google Scholar] [CrossRef]
- Ghorai, S.; Sarkar, A.K.; Panda, A.B.; Pal, S. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 2013, 144, 485–491. [Google Scholar] [CrossRef]
- Lyu, H.; Ling, Y.; Fan, J.; Chen, Y.; Yu, Y.; Xie, Z. Preparation of ionic liquid-functionalized layered double hydroxide via thiol-ene click chemistry for highly efficient removal of azo dyes during broad pH range. J. Clean. Prod. 2019, 211, 1026–1033. [Google Scholar] [CrossRef]
Adsorbents | Before Dye Adsorption | After Dye Adsorption | ||||||
---|---|---|---|---|---|---|---|---|
as,BET, (m2/g) (±2) | dp, (nm) (±0.5) | Vp, (cm3/g) (±0.05) | Type of Isotherm | as,BET, (m2/g) (±1.5) | dp, (nm) (±1) | Vp, (cm3/g) (±0.03) | Type of Isotherm | |
DE | 28 | 2.44 | 0.0225 | II | 18 | 2.44 | 0.0183 | II |
DE-LDH | 51 | 3.33 | 0.0697 | II | 44 | 3.33 | 0.0712 | II |
Langmuir Constants | Freundlich Constants | ||||||
---|---|---|---|---|---|---|---|
Adsorbents | qm (mg/g) (±2) | KL (L/mg) (±0.05) | RL (±0.05) | R2 | 1/n (±0.1) | KF (mg/g) (±1) | R2 |
DE | 23.2 | 0.002 | 0.89 to 0.29 | 0.650 | 0.489 | 0.54 | 0.939 |
DE-LDH | 305.8 | 0.049 | 0.28 to 0.01 | 0.985 | 0.336 | 42.1 | 0.926 |
Pseudo-First-Order | Pseudo-Second-Order | |||||||
---|---|---|---|---|---|---|---|---|
Adsorbents | C0 (mg/L) (±5) | qe, exp (mg/g) (±3) | K1 (1/min) (±0.05) | qe, cal (mg/g) (±1.5) | R2 | K2 (g/mg/min) (±0.05) | qe, cal (mg/g) (±2) | R2 |
DE | 50 | 2.52 | −0.015 | 0.21 | 0.640 | −0.056 | 1.89 | 0.987 |
100 | 4.50 | −0.013 | 0.42 | 0.342 | −0.049 | 4.74 | 0.999 | |
250 | 7.23 | −0.008 | 2.72 | 0.204 | −0.019 | 14.29 | 0.998 | |
DE-LDH | 50 | 30.68 | 0.013 | 2.17 | 0.773 | 0.041 | 30.85 | 0.999 |
100 | 61.04 | 0.028 | 6.18 | 0.982 | 0.016 | 61.57 | 1 | |
250 | 147.5 | 0.023 | 24.86 | 0.713 | 0.002 | 151.97 | 0.999 |
Adsorbents | pH | Dosage (mg) | Time (min) | qm, (mg/g) | Reference |
---|---|---|---|---|---|
C/MnCuAl-LDOs | 4.5 | 20 | 180 | 317.2 | [2] |
MgO-GO | 7 | 200 | 60 | 237 | [28] |
Cross-linked PFCs | 8 | 50 | 60 | 256.4 | [30] |
SiO2-PDA-PAPTCl | 7 | 200 | 60 | 302.6 | [31] |
Magnesium borate | - | 10 | 180 | 183.15 | [32] |
CABI nano-goethite | 3 | 70 | 180 | 181.1 | [33] |
DAMFC/chitosan | 5.5 | 100 | 10 | 152.5 | [34] |
Mg–Al-LDH | 4 | 50 | 20 | 111.11 | [35] |
Maghemite | 5.9 | 50 | 30 | 208.33 | [36] |
XG-g-PAM/SiO2-2 | 4 | 50 | 150 | 209.20 | [37] |
IL-LDH | 7 | 5 | 60 | 288.63 | [38] |
DE-LDH | 7 | 40 | 30 | 305.8 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriram, G.; Uthappa, U.T.; Losic, D.; Kigga, M.; Jung, H.-Y.; Kurkuri, M.D. Mg–Al-Layered Double Hydroxide (LDH) Modified Diatoms for Highly Efficient Removal of Congo Red from Aqueous Solution. Appl. Sci. 2020, 10, 2285. https://doi.org/10.3390/app10072285
Sriram G, Uthappa UT, Losic D, Kigga M, Jung H-Y, Kurkuri MD. Mg–Al-Layered Double Hydroxide (LDH) Modified Diatoms for Highly Efficient Removal of Congo Red from Aqueous Solution. Applied Sciences. 2020; 10(7):2285. https://doi.org/10.3390/app10072285
Chicago/Turabian StyleSriram, Ganesan, U. T. Uthappa, Dusan Losic, Madhuprasad Kigga, Ho-Young Jung, and Mahaveer D. Kurkuri. 2020. "Mg–Al-Layered Double Hydroxide (LDH) Modified Diatoms for Highly Efficient Removal of Congo Red from Aqueous Solution" Applied Sciences 10, no. 7: 2285. https://doi.org/10.3390/app10072285
APA StyleSriram, G., Uthappa, U. T., Losic, D., Kigga, M., Jung, H.-Y., & Kurkuri, M. D. (2020). Mg–Al-Layered Double Hydroxide (LDH) Modified Diatoms for Highly Efficient Removal of Congo Red from Aqueous Solution. Applied Sciences, 10(7), 2285. https://doi.org/10.3390/app10072285