Solvent Extraction of Didymium by TBP, Aliquat 336 and HDEHP in The Presence of Ca(NO3)2
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents, Chemicals and Analytical Tools
2.2. Solvent Extraction Experiments
2.2.1. Batch Extraction Experiments
2.2.2. Countercurrent Extraction Mode
3. Results
3.1. Batch Extraction
3.1.1. Di-(2-ethylhexyl)phosphoric Acid (HDEHP)
3.1.2. Aliquat 336
3.1.3. Tri-N-Butyl-Phosphate (TBP)
3.2. Countercurrent Experiments
3.2.1. Countercurrent Experiment with Aliquat 336
3.2.2. Countercurrent Experiment with TBP
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, C.K.K.; Krishnamurthy, N. Extractive Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0-415-33340-7. [Google Scholar]
- Jha, M.K.; Kumari, A.; Panda, R.; Rajesh Kumar, J.; Yoo, K.; Lee, J.Y. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- McLellan, B.C.; Corder, G.D.; Ali, S.H. Sustainability of rare earths—An overview of the state of knowledge. Minerals 2013, 3, 304–317. [Google Scholar] [CrossRef]
- Herbst, J.F.; Croat, J.J.; Pinkerton, F.E.; Yelon, W.B. Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys. Rev. B 1984, 29, 4176. [Google Scholar] [CrossRef]
- Gergoric, M.; Ravaux, C.; Steenari, B.M.; Espegren, F.; Retegan, T. Leaching and recovery of rare-earth elements from neodymium magnet waste using organic acids. Metals 2018, 8, 721. [Google Scholar] [CrossRef]
- Marx, J.; Schreiber, A.; Zapp, P.; Walachowicz, F. Comparative life cycle assessment of NdFeB permanent magnet production from different rare earth deposits. ACS Sustain. Chem. Eng. 2018, 6, 5858–5867. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Umer, U.; Abdulhameed, O.; Alkhalefah, H. Effects of laser fluence and pulse overlap on machining of microchannels in alumina ceramics using an Nd: YAG laser. Appl. Sci. 2019, 9, 3962. [Google Scholar] [CrossRef]
- Gui, K.; Zhang, Z.; Xing, Y.; Zhang, H.; Zhao, C. Frequency difference thermally and electrically tunable dual-frequency Nd:YAG/LiTaO3 microchip laser. Appl. Sci. 2019, 9, 1969. [Google Scholar] [CrossRef]
- Höcker, J.; Krisponeit, J.O.; Cambeis, J.; Zakharov, A.; Niu, Y.; Wei, G.; Colombi Ciacchi, L.; Falta, J.; Schaefer, A.; Flege, J.I. Growth and structure of ultrathin praseodymium oxide layers on ruthenium(0001). Phys. Chem. Chem. Phys. 2017, 19, 3480–3485. [Google Scholar] [CrossRef] [PubMed]
- Vaiano, V.; Matarangolo, M.; Sacco, O.; Sannino, D. Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl. Catal. B Environ. 2017, 209, 621–630. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salavati-Niasari, M.; Zinatloo-Ajabshir, Z. Facile size-controlled preparation of highly photocatalytically active praseodymium zirconate nanostructures for degradation and removal of organic pollutants. Sep. Purif. Technol. 2017, 177, 110–120. [Google Scholar] [CrossRef]
- Rabie, K.A. A group separation and purification of Sm, Eu and Gd from Egyptian beach monazite mineral using solvent extraction. Hydrometallurgy 2007, 85, 81–86. [Google Scholar] [CrossRef]
- Dingle, A. Praseodymium unpaired. Nat. Chem. 2018, 10, 576. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Zhang, T.A.; Dreisinger, D.; Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28. [Google Scholar] [CrossRef]
- Wilson, A.M.; Bailey, P.J.; Tasker, P.A.; Turkington, J.R.; Grant, R.A.; Love, J.B. Solvent extraction: The coordination chemistry behind extractive metallurgy. Chem. Soc. Rev. 2014, 43, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Jorjani, E.; Shahbazi, M. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid. Arab. J. Chem. 2016, 9, S1532–S1539. [Google Scholar] [CrossRef]
- Schulz, W.W.; Navratil, J.D.; Bess, T. Science and Technology of Tributyl Phosphate; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Matveev, P.I.; Petrov, V.G.; Egorova, B.V.; Senik, N.N.; Semenkova, A.S.; Dubovaya, O.V.; Valkov, A.V.; Kalmykov, S.N. Solvent extraction of rare earth elements by tri-n-butyl phosphate and tri-iso-amyl phosphate in the presence of Ca(NO3)2. Hydrometallurgy 2018, 175, 218–223. [Google Scholar] [CrossRef]
- Scal, M.L.W.; Seruff, L.A.; Vera, Y.M. Study of the separation of didymium from lanthanum using liquid-liquid extraction: Comparison between saponification of the extractant and use of lactic acid. Miner. Eng. 2020, 148, 106200. [Google Scholar] [CrossRef]
- Santos, G.; Vera, Y.M. Estudio de la extracción de tierras raras ligeras a partir de la extracción líquido – líquido utilizando ácidos organofosforados y ácido ascórbico. Rev. Metal. 2019, 55, 142. [Google Scholar] [CrossRef]
- Basualto, C.; Valenzuela, F.; Molina, L.; Muñoz, J.P.; Sapag, J. Study of the solvent extraction of the lighter lanthanide metal ions by means of organophosphorus extractants. J. Chil. Chem. Soc. 2013, 2, 1785–1789. [Google Scholar] [CrossRef]
- Panda, N.; Devi, N.; Mishra, S. Solvent extraction of neodymium(III) from acidic nitrate medium using Cyanex 921 in kerosene. J. Rare Earths 2012, 30, 794–797. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Raiguel, S.; Binnemans, K. Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336. Sep. Purif. Technol. 2018, 201, 318–326. [Google Scholar] [CrossRef]
- Padhan, E.; Sarangi, K. Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272. Hydrometallurgy 2017, 167, 134–140. [Google Scholar] [CrossRef]
- Abreu, R.D.; Morais, C.A. Study on separation of heavy rare earth elements by solvent extraction with organophosphorus acids and amine reagents. Miner. Eng. 2014, 61, 82–87. [Google Scholar] [CrossRef]
- Igumnov, S.N.; Valkov, A.V. Separation of rare earth elements in the tributyl phosphate–Ln(NO3)3–Ca(NO3)2 system in the counter current process. Mosc. Univ. Chem. Bull. 2017, 72, 115–119. [Google Scholar] [CrossRef]
- Preston, J.S. The recovery of rare earth oxides from a phosphoric acid byproduct. Part 4. The preparation of magnet-grade neodymium oxide from the light rare earth fraction. Hydrometallurgy 1996, 42, 151–167. [Google Scholar] [CrossRef]
- Lu, D.; Horng, J.S.; Hoh, Y.C. The separation of neodymium by quaternary amine from didymium nitrate solution. J. Less-Common Metals 1989, 149, 219–224. [Google Scholar] [CrossRef]
- Reddy, M.L.P.; Prasada Rao, T.; Damodaran, A.D. Liquid-liquid extraction processes for the separation and purification of rare earths. Miner. Process. Extr. Metall. Rev. 1993, 12, 91–113. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Q.; Bao, B. Synergistic effects in extraction and separation of praseodymium(III) and neodymium(III) with 8-hydroxyquinoline in the presence of 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Ind. Eng. Chem. Res. 2007, 46, 6320–6325. [Google Scholar] [CrossRef]
- Thakur, N.V. Separation of rare earths by solvent extraction. Miner. Process. Extr. Metall. Rev. 2000, 21, 277–306. [Google Scholar] [CrossRef]
- Mokili, B.; Poitrenaud, C. Modelling of the extraction of neodymium and praseodymium nitrates from aqueous solutions containing a salting-out agent or nitric acid by tri-n-butylphosphate. Solvent Extr. Ion Exch. 1996, 14, 617–634. [Google Scholar] [CrossRef]
- Panda, N.; Mishra, S. Binary mixture of Cyanex 921 and Cyanex 923 as extractant for praseodymium (III) and neodymium (III). J. Chem. Technol. Metall. 2017, 52, 113–125. [Google Scholar]
- de Fábrega, F.M.; Mansur, M.B. Liquid-liquid extraction of mercury (II) from hydrochloric acid solutions by Aliquat 336. Hydrometallurgy 2007, 87, 83–90. [Google Scholar] [CrossRef]
- Bae, H.S.; Hwang, H.; Eom, I.Y. Argentometric titration apparatus with a light emitting diode-based nephelometric detection system. Bull. Korean Chem. Soc. 2015, 36, 2725–2729. [Google Scholar] [CrossRef]
- Craig, L.C.; Hausmann, W.; Ahrens, E.H.; Harfenist, E.J. Automatic countercurrent distribution equipment. Anal. Chem. 1951, 23, 1236–1244. [Google Scholar] [CrossRef]
- Melnik, M.I.; Spiryakov, V.I.; Filimonov, V.T.; Karelin, E.A. Preparation of lanthanide (III) neutral compound ligands in the Ln(CH3COO)3–HDEHP–decane system and study of their solubility in HDEHP–decane solutions. J. Alloys Compd. 1998, 277, 863–867. [Google Scholar] [CrossRef]
- Peppard, F.; Mason, G.W.; Maier, J.L. Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J. Nucl. Inorg. Chem. 1957, 4, 334–343. [Google Scholar] [CrossRef]
- Nash, K.L. The chemistry of TALSPEAK: A review of the science. Solvent Extr. Ion Exch. 2015, 33, 37–41. [Google Scholar] [CrossRef]
C(Pr + Nd), g∙L−1 | 10 | 25 | 50 | 75 |
---|---|---|---|---|
С(HNO3), mol∙L−1 | ||||
0.005 | stable | Third phase | Gel | Gel |
0.03 | stable | stable | Third phase | Gel |
0.07 | stable | stable | stable | Gel |
0.1 | stable | stable | stable | Gel |
Na2EDTA, % | 20 | 40 | 60 | 80 | 100 |
D(Nd) | 0.07 ± 0.01 | 0.06 ± 0.005 | 0.03 ± 0.002 | 0.02 ± 0.002 | 0.01 ± 0.001 |
D(Pr) | 0.15 ± 0.02 | 0.14 ± 0.005 | 0.08 ± 0.005 | 0.04 ± 0.002 | 0.016 ± 0.002 |
SF(Pr/Nd) | 1.8 ± 0.3 | 2.3 ± 0.2 | 2.6 ± 0.2 | 2.1 ± 0.2 | 1.6 ± 0.2 |
SFmax | 2.6 ± 0.2 | ||||
Na2DTPA, % | 20 | 40 | 60 | 80 | 100 |
D(Nd) | 0.08 ± 0.01 | 0.05 ± 0.005 | 0.02 ± 0.002 | 0.014 ± 0.003 | 0.011 ± 0.002 |
D(Pr) | 0.16 ± 0.01 | 0.14 ± 0.01 | 0.07 ± 0.005 | 0.040 ± 0.006 | 0.019 ± 0.005 |
SF(Pr/Nd) | 2.1 ± 0.2 | 2.7 ± 0.2 | 3.6 ± 0.3 | 2.9 ± 0.3 | 1.8 ± 0.2 |
SFmax | 3.6 ± 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveev, P.I.; Petrov, V.G. Solvent Extraction of Didymium by TBP, Aliquat 336 and HDEHP in The Presence of Ca(NO3)2. Appl. Sci. 2020, 10, 2032. https://doi.org/10.3390/app10062032
Matveev PI, Petrov VG. Solvent Extraction of Didymium by TBP, Aliquat 336 and HDEHP in The Presence of Ca(NO3)2. Applied Sciences. 2020; 10(6):2032. https://doi.org/10.3390/app10062032
Chicago/Turabian StyleMatveev, Petr I., and Vladimir G. Petrov. 2020. "Solvent Extraction of Didymium by TBP, Aliquat 336 and HDEHP in The Presence of Ca(NO3)2" Applied Sciences 10, no. 6: 2032. https://doi.org/10.3390/app10062032
APA StyleMatveev, P. I., & Petrov, V. G. (2020). Solvent Extraction of Didymium by TBP, Aliquat 336 and HDEHP in The Presence of Ca(NO3)2. Applied Sciences, 10(6), 2032. https://doi.org/10.3390/app10062032