Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel
Abstract
1. Introduction
2. Background
2.1. Logical Bell State on Collective-Dephasing Noise
2.2. Entanglement Swapping Results of Logical Bell States on Collective-Dephasing Noise
3. Protocol Process
4. Security Analysis
4.1. Database Security Analysis
4.2. User Privacy Security Analysis
4.3. The Eva Attack
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| QPQ | Quantum Private Query | 
| QKD | Quantum Key Distribution | 
| SPIR | Symmetric Private Information Retrieval | 
| JM | Joint-Measurement | 
| DF | Decoherence-Free | 
References
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public-key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
 - Ma, H.; Teng, J.; Hu, T.; Shi, P.; Wang, S. Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities. Wireless Pers Commun. Available online: https://doi.org/10.1007/s11277-020-07192-7 (accessed on 6 February 2020). [CrossRef]
 - Shi, P.; Li, N.; Wang, S.; Liu, Z.; Ren, M.; Ma, H. Quantum Multi-User Broadcast Protocol for the “Platform as a Service” Model. Sensors 2019, 19, 5257. [Google Scholar] [CrossRef] [PubMed]
 - Ma, H.-Y.; Xu, P.-A.; Shao, C.-H.; Chen, L.; Li, J.-X.; Pan, Q. Quantum Private Query Based on Stable Error Correcting Code in the Case of Noise. Int. J. Theor. Phys. 2019, 58, 4241–4248. [Google Scholar]
 - Teng, J.; Ma, H. Dynamic asymmetric group key agreement protocol with traitor traceability. IET Inf. Secur. 2019, 13, 703–710. [Google Scholar] [CrossRef]
 - Hillery, M.; Buzek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829–1834. [Google Scholar] [CrossRef]
 - Long, G.L.; Liu, X.S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
 - Yang, L.; Ma, H.; Zheng, C.; Ding, X.; Gao, J.; Long, G. Quantum secure communication scheme based on quantum teleportation. J. Phys. 2017, 66, 37–47. [Google Scholar]
 - Wei, C.Y.; Wang, T.Y.; Gao, F. Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 2016, 93, 042318. [Google Scholar] [CrossRef]
 - Walton, Z.D.; Abouraddy, A.F.; Sergienko, A.V.; Saleh, B.E.; Teich, M.C. Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 2003, 91, 087901. [Google Scholar] [CrossRef]
 - Ye, T. Error tolerance of quantum steganography over collective noise channel. Sci. China Phys. Mech. Astron. 2015, 1, 010301. [Google Scholar] [CrossRef]
 - Lin, J.; Hwang, T. Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quant. Inf. Process. 2013, 12, 1089–1107. [Google Scholar] [CrossRef]
 - Yang, C.; Guo, Y.N.; Peng, H.P.; Lu, Y.B. Dynamics of local quantum uncertainty for a two-qubit system under dephasing noise. Laser Phys. 2019, 30, 015203. [Google Scholar] [CrossRef]
 - Chang, L.W.; Zhang, Y.Q.; Tian, X.X.; Qian, Y.H.; Zheng, S.H. Fault tolerant controlled quantum dialogue against collective noise. Chin. Phys. B 2020, 29, 010304. [Google Scholar] [CrossRef]
 - Li, X.H.; Deng, F.G.; Zhou, H.Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 2007, 91, 144101. [Google Scholar] [CrossRef]
 - Zhang, Z.J. Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 2006, 361, 233–238. [Google Scholar] [CrossRef]
 - Gu, B.; Mu, L.; Ding, L.; Zhang, C.; Li, C. Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 2010, 283, 3099–3103. [Google Scholar] [CrossRef]
 - Yang, C.W.; Tsai, C.W.; Hwang, T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 2011, 54, 496–501. [Google Scholar] [CrossRef]
 - Hsieh, C.R.; Tsai, C.W.; Hwang, T. Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 2010, 54, 1019. [Google Scholar]
 - Shi, W.X.; Liu, X.T.; Wang, J.; Tang, C.J. Multi-Bit Quantum private query. Commun. Theor. Phys. 2015, 64, 299–304. [Google Scholar] [CrossRef]
 - Yang, Y.G.; Yang, R.; Cao, W.F.; Chen, X.B.; Zhou, Y.H.; Shi, W.M. Flexible quantum oblivious transfer. Int. J. Theor. Phys. 2017, 56, 1286–1297. [Google Scholar] [CrossRef]
 - Yang, Y.G.; Sun, S.J.; Wang, Y. Quantum oblivious transfer based on a quantum symmetrically private information retrieval protocol. Int. J. Theor. Phys. 2015, 54, 910–916. [Google Scholar] [CrossRef]
 - Jakobi, M.; Simon, C.; Gisin, N.; Bancal, J.D.; Branciard, C.; Walenta, N.; Zbinden, H. Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 2011, 83, 022301. [Google Scholar] [CrossRef]
 - Yang, Y.G.; Liu, Z.C.; Chen, X.B.; Cao, W.F.; Zhou, Y.H.; Shi, W.M. Novel classical post-processing for quantum key distribution-based quantum private query. Quant. Inf. Process. 2016, 15, 3833–3840. [Google Scholar] [CrossRef]
 - Bennett, C.H.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J.A.; Wootters, W.K. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 1996, 76, 722–725. [Google Scholar] [CrossRef]
 - Wei, C.Y.; Cai, X.Q.; Liu, B.; Wang, T.Y.; Gao, F. A generic construction of quantum-oblivious-key transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 2017, 67, 2–8. [Google Scholar] [CrossRef]
 - Gao, F.; Qin, S.J.; Huang, W.; Wen, Q.Y. Quantum private query: A new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 2019, 62, 70301. [Google Scholar] [CrossRef]
 - Rao, M.V.P.; Jakobi, M. Towards ommunication-efficient quantum oblivious key distribution. Phys. Rev. A 2013, 87, 012331. [Google Scholar]
 - Raynal, P. Unambiguous state discrimination of two density matrices in quantum information theory. arXiv 2006, arXiv:0611133. [Google Scholar]
 - Herzog, U.; Bergou, J.A. Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 2005, 71, 050301. [Google Scholar] [CrossRef]
 
| Two Logical Bell States | Two Logical Bell States after Entanglement Swapping | 
|---|---|
| 00 | |
| 01 | |
| 10 | |
| 11 | |
| Quantum States Sent by Bob | Measurement Selected by Alice | Possible Measurement | The States of Bob’s Statement | The Results of Alice’s Measurement | 
|---|---|---|---|---|
| Quantum States Sent by Bob | Measurement Selected by Alice | Possible Measurement | The States of Bob’s Statement | The Results of Alice’s Measurement | 
|---|---|---|---|---|
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | ||||
| ? | 
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhang, W.; Ma, Y.; Zhang, X.; Ma, H. Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel. Appl. Sci. 2020, 10, 1935. https://doi.org/10.3390/app10061935
Zhao J, Zhang W, Ma Y, Zhang X, Ma H. Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel. Applied Sciences. 2020; 10(6):1935. https://doi.org/10.3390/app10061935
Chicago/Turabian StyleZhao, Jingbo, Wenbin Zhang, Yulin Ma, Xiaohan Zhang, and Hongyang Ma. 2020. "Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel" Applied Sciences 10, no. 6: 1935. https://doi.org/10.3390/app10061935
APA StyleZhao, J., Zhang, W., Ma, Y., Zhang, X., & Ma, H. (2020). Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel. Applied Sciences, 10(6), 1935. https://doi.org/10.3390/app10061935
        
