Automated Detection of Multiple Lesions on Chest X-ray Images: Classification Using a Neural Network Technique with Association-Specific Contexts
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Overview
2.2. CAL Network
2.2.1. CNN Encoder
2.2.2. Attention-Based LSTM Decoder
2.3. CLA Network
Algorithm 1 Building association graph. |
Input: N,M,C,L,CXNL,CXNLA,E Output: association graph <L,E>
|
Algorithm 2 Adjusting label orders. |
Input: graph <L,E >, LABP Output: LABO
|
3. Experiments
3.1. Dataset
3.2. Pre-Processing and Training
3.3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harwood, T.R.; Gracey, D.R.; Yokoo, H. Pseudomesotheliomatous carcinoma of the lung: a variant of peripheral lung cancer. Am. J. Clin. Pathol. 1976, 65, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Sangani, N.K.; Naliath, S.M. Pseudomesotheliomatous Type of Sarcomatoid Squamous Cell Lung Cancer Presenting With Hemothorax. Ann. Thorac. Surg. 2018, 106, e201–e203. [Google Scholar] [CrossRef] [PubMed]
- Triplette, M.; Attia, E.; Akgün, K.; Campo, M.; Rodriguez-Barradas, M.; Pipavath, S.; Shahrir, S.; Wongtrakool, C.; Goetz, M.B.; Kim, J.; et al. The differential impact of emphysema on respiratory symptoms and six-minute walk distance in HIV infection. J. Acquir. Immune Defic. Syndr. (1999) 2017, 74, e23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sforza, A.; Carlino, M.V.; Guarino, M.; Russo, S.; Albano, G.; Paladino, F.; Mancusi, C. A case of pulmonary edema: The critical role of lung-heart integrated ultrasound examination. Monaldi Arch. Chest Dis. 2018, 88, 982. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, A.; Fujita, H.; Yamamuro, O.; Tamaki, T. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Med. Phys. 2016, 43 Pt 1, 2821–2827. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar]
- Zhang, Y.; Zhang, B.; Coenen, F.; Xiao, J.; Lu, W. One-class kernel subspace ensemble for medical image classification. EURASIP J. Adv. Signal Process. 2014, 2014, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.D.; Chen, S.; Wang, S.H.; Yang, J.F.; Phillips, P. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int. J. Imaging Syst. Technol. 2015, 25, 317–327. [Google Scholar] [CrossRef]
- Agrawal, V.; Chandra, S. Feature selection using Artificial Bee Colony algorithm for medical image classification. In Proceedings of the 2015 Eighth International Conference on Contemporary Computing (IC3), Noida, India, 20–22 August 2015; pp. 171–176. [Google Scholar]
- Kumar, A.; Kim, J.; Lyndon, D.; Fulham, M.; Feng, D. An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J. Biomed. Health Inform. 2016, 21, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Jamaludin, A.; Kadir, T.; Zisserman, A. SpineNet: Automated classification and evidence visualization in spinal MRIs. Med. Image Anal. 2017, 41, 63–73. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Graves, A.B. System and Method for Speech Recognition Using Deep Recurrent Neural Networks. U.S. Patent 9,263,036, 16 February 2016. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Zia, T.; Zahid, U. Long short-term memory recurrent neural network architectures for Urdu acoustic modeling. Int. J. Speech Technol. 2019, 22, 21–30. [Google Scholar] [CrossRef]
- Nyboe Ørting, S.; Petersen, J.; Cheplygina, V.; Thomsen, L.H.; Wille, M.M.; de Bruijne, M. Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans. arXiv 2018, arXiv:1806.07131. [Google Scholar]
- Anavi, Y.; Kogan, I.; Gelbart, E.; Geva, O.; Greenspan, H. Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval. In Proceedings of the SPIE Medical Imaging, San Diego, CA, USA, 7 July 2016; Volume 9785, p. 978510. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Neural Information Processing Systems Conference, Lake Tahoe, NV, USA, 3 December 2012; pp. 1097–1105. [Google Scholar]
- Li, Z.; Wang, C.; Han, M.; Xue, Y.; Wei, W.; Li, L.J.; Li, F.-F. Thoracic disease identification and localization with limited supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8290–8299. [Google Scholar]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. Chexnet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Vluymans, S.; Cornelis, C.; Herrera, F.; Saeys, Y. Multi-label classification using a fuzzy rough neighborhood consensus. Inf. Sci. 2018, 433, 96–114. [Google Scholar] [CrossRef]
- Pereira, R.B.; Plastino, A.; Zadrozny, B.; Merschmann, L.H. Categorizing feature selection methods for multi-label classification. Artif. Intell. Rev. 2018, 49, 57–78. [Google Scholar] [CrossRef]
- Chen, S.F.; Chen, Y.C.; Yeh, C.K.; Wang, Y.C. Order-free RNN with visual attention for multi-label classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Xu, S.; Wu, H.; Bie, R. CXNet-m1: Anomaly detection on chest X-rays with image-based deep learning. IEEE Access 2018, 7, 4466–4477. [Google Scholar] [CrossRef]
- Fu, K.; Jin, J.; Cui, R.; Sha, F.; Zhang, C. Aligning where to see and what to tell: Image captioning with region-based attention and scene-specific contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 2321–2334. [Google Scholar] [CrossRef]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; pp. 2048–2057. [Google Scholar]
- Wang, Y.; Chen, X.; Song, Y.; Caballero, B.; Cheskin, L.J. Association between obesity and kidney disease: A systematic review and meta-analysis. Kidney Int. 2008, 73, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Chaffee, B.W.; Weston, S.J. Association between chronic periodontal disease and obesity: A systematic review and meta-analysis. J. Periodontol. 2010, 81, 1708–1724. [Google Scholar] [CrossRef] [PubMed]
- Luke, M.J.; Mehrizi, A.; Folger, G.M.; Rowe, R.D. Chronic nasopharyngeal obstruction as a cause of cardiomegaly, cor pulmonale, and pulmonary edema. Pediatrics 1966, 37, 762–768. [Google Scholar] [PubMed]
- Dodek, A.; Kassebaum, D.G.; Bristow, J.D. Pulmonary edema in coronary-artery disease without cardiomegaly: paradox of the stiff heart. N. Engl. J. Med. 1972, 286, 1347–1350. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, B.D.; De Jong, K.; Lamontagne, M.; Bossé, Y.; Shrine, N.; Artigas, M.S.; Wain, L.V.; Hall, I.P.; Jackson, V.E.; Wyss, A.B.; et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 2017, 49, 426. [Google Scholar] [CrossRef] [PubMed]
- Oelsner, E.C.; Carr, J.J.; Enright, P.L.; Hoffman, E.A.; Folsom, A.R.; Kawut, S.M.; Kronmal, R.A.; Lederer, D.J.; Lima, J.A.; Lovasi, G.S.; et al. Per cent emphysema is associated with respiratory and lung cancer mortality in the general population: A cohort study. Thorax 2016, 71, 624–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Chao, M.; Lo, Y.C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 2017, 36, 1876–1886. [Google Scholar] [CrossRef]
- Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Aviles-Rivero, A.I.; Papadakis, N.; Li, R.; Sellars, P. GraphX-NET Chest X-ray Classification Under Extreme Minimal Supervision. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2019; pp. 504–512. [Google Scholar]
- Yao, L.; Prosky, J.; Poblenz, E.; Covington, B.; Lyman, K. Weakly supervised medical diagnosis and localization from multiple resolutions. arXiv 2018, arXiv:1803.07703. [Google Scholar]
- Xu, S.; Zhang, G.; Bie, R.; Kos, A. CXNet-m2: A Deep Model with Visual and Clinical Contexts for Image-Based Detection of Multiple Lesions. In International Conference on Wireless Algorithms, Systems, and Applications; Springer: Cham, Switzerland, 2019; pp. 407–418. [Google Scholar]
- Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164. [Google Scholar]
- Ling, C.X.; Huang, J.; Zhang, H. AUC: A statistically consistent and more discriminating measure than accuracy. Ijcai 2003, 3, 519–524. [Google Scholar]
Symbols and Definitions | Descriptions |
---|---|
N | the number of lesion types |
M | the number of images (labels) |
C | the number of labels of an image |
L = {,...,..., } | the set of lesions in chest X-ray images |
D = { ,...,... } | the set of degree of vertexes(lesions) |
E = {,...,..., } | the edges of the graph built by algorithm 1 |
CXNL = {,...,...} | the set of numbers of lesions |
= { ,...,... } | the set of times when both lesion i |
and other lesions are in an image | |
LABO = [[,..., ],..., [,..., ]] | the list of M lists where the order of labels |
of each image are adjusted | |
LABP = [{ :,...,: },...,{ :,...,: }] | the list of M dictionaries where the key is |
and the value is . C key-value pairs in each dictionary |
Lesion | Infiltration | Effusion | Atelectasis | Nodule | Mass | Pneumothorax | Consolidation |
Image Number | 19,894 | 13,317 | 11,559 | 6331 | 5782 | 5302 | 4667 |
Multi-lesion Image Number | 10,345 | 9360 | 7243 | 3626 | 3643 | 3108 | 3344 |
Single-lesion Image Number | 9549 | 3957 | 4316 | 2711 | 2139 | 2194 | 1323 |
Lesion | Pleural Thickening | Cardiomegaly | Emphysema | Edema | Fibrosis | Pneumonia | Hernia |
Image Number | 3385 | 2776 | 2516 | 2303 | 1686 | 1431 | 227 |
Multi-lesion Image Number | 2259 | 1582 | 1624 | 1672 | 959 | 1109 | 117 |
Single-lesion Image Number | 1126 | 1194 | 892 | 631 | 727 | 322 | 110 |
Abnormality | Wang et al. [6] | Aviles-Rivero et al. [39] | Yao et al. [40] | ours-vgg | ours-res |
---|---|---|---|---|---|
atelectasis | 0.716 | 0.719 | 0.733 | 0.734 | 0.788 |
cardiomegaly | 0.807 | 0.880 | 0.858 | 0.848 | 0.828 |
effusion | 0.784 | 0.792 | 0.806 | 0.797 | 0.865 |
infiltration | 0.609 | - | 0.673 | 0.675 | 0.682 |
mass | 0.706 | 0.809 | 0.777 | 0.793 | 0.766 |
nodule | 0.671 | 0.711 | 0.718 | 0.708 | 0.732 |
pneumonia | 0.633 | 0.766 | 0.684 | 0.702 | 0.719 |
pneumothorax | 0.806 | 0.837 | 0.805 | 0.861 | 0.827 |
consolidation | 0.708 | 0.734 | 0.711 | 0.792 | 0.724 |
edema | 0.835 | 0.802 | 0.806 | 0.803 | 0.869 |
emphysema | 0.815 | 0.841 | 0.842 | 0.839 | 0.853 |
fibrosis | 0.769 | 0.803 | 0.743 | 0.781 | 0.766 |
PT | 0.708 | 0.757 | 0.724 | 0.724 | 0.774 |
hernia | 0.767 | 0.872 | 0.775 | 0.781 | 0.853 |
A.V.G | 0.738 | 0.789 | 0.761 | 0.772 | 0.791 |
Setting | Precision | Recall | F-Score | ||||||
---|---|---|---|---|---|---|---|---|---|
C=2 | C=3 | C=4 | C=2 | C=3 | C=4 | C=2 | C=3 | C=4 | |
CXNet-m2-b [41] | – | – | 0.724 | – | – | 0.713 | – | – | 0.718 |
SAT [42] | 0.666 | 0.657 | 0.632 | 0.666 | 0.657 | 0.636 | 0.666 | 0.657 | 0.634 |
Resb3-CAL-wopt | 0.684 | 0.676 | 0.653 | 0.684 | 0.676 | 0.653 | 0.684 | 0.676 | 0.653 |
Resb3-CAL | 0.730 | 0.726 | 0.717 | 0.728 | 0.726 | 0.717 | 0.729 | 0.726 | 0.717 |
Resb4-CAL | 0.707 | 0.694 | 0.686 | 0.707 | 0.694 | 0.686 | 0.707 | 0.694 | 0.686 |
Resb3-CAL-CLA | 0.733 | 0.730 | 0.728 | 0.733 | 0.730 | 0.728 | 0.733 | 0.730 | 0.728 |
Vggc4-CAL | 0.719 | 0.708 | 0.691 | 0.719 | 0.708 | 0.691 | 0.719 | 0.708 | 0.691 |
Vggc5-CAL | 0.739 | 0.734 | 0.729 | 0.739 | 0.734 | 0.729 | 0.739 | 0.734 | 0.729 |
Vggc5-CAL-CLA | 0.739 | 0.739 | 0.741 | 0.739 | 0.737 | 0.741 | 0.739 | 0.738 | 0.741 |
Improvements-1 | – | – | 0.017 | – | – | 0.028 | – | – | 0.023 |
Improvements-2 | 0.073 | 0.082 | 0.109 | 0.073 | 0.080 | 0.105 | 0.073 | 0.081 | 0.107 |
Original Order | A-E-I | A-CO-E | ED-I-P | CO-E-I | ED-E-I | CA-E-I | E-I-M | A-CO-I |
Updated Order | I-E-A | CO-A-E | I-ED-P | CO-E-I | ED-I-E | I-E-CA | M-E-I | I-A-CO |
Original Order | A-E-I-PX | A-CO-E-I | A-CA-E-I | A-E-I-M | A-CO-E-M | A-EM-M-PX | ||
Updated Order | I-E-PX-A | I-A-CO-E | I-A-E-CA | M-E-I-A | A-E-CO-M | A-M-PX-EM |
E|I | A|I | A|E | A|E|I | A|C|E|I | |
---|---|---|---|---|---|
Precision | 0.798 | 0.854 | 0.775 | 0.771 | 0.763 |
Recall | 0.798 | 0.854 | 0.775 | 0.848 | 0.817 |
F-score | 0.798 | 0.854 | 0.775 | 0.808 | 0.789 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Guo, J.; Zhang, G.; Bie, R. Automated Detection of Multiple Lesions on Chest X-ray Images: Classification Using a Neural Network Technique with Association-Specific Contexts. Appl. Sci. 2020, 10, 1742. https://doi.org/10.3390/app10051742
Xu S, Guo J, Zhang G, Bie R. Automated Detection of Multiple Lesions on Chest X-ray Images: Classification Using a Neural Network Technique with Association-Specific Contexts. Applied Sciences. 2020; 10(5):1742. https://doi.org/10.3390/app10051742
Chicago/Turabian StyleXu, Shuaijing, Junqi Guo, Guangzhi Zhang, and Rongfang Bie. 2020. "Automated Detection of Multiple Lesions on Chest X-ray Images: Classification Using a Neural Network Technique with Association-Specific Contexts" Applied Sciences 10, no. 5: 1742. https://doi.org/10.3390/app10051742