# Optimization and Experiment of Mass Compensation Strategy for Built-In Mechanical On-Line Dynamic Balancing System

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Optimization of Spindle Built-In Dynamic Balance Mass Compensation Strategy

#### 2.1. Balance Principle

#### 2.2. Optimization Model

_{1}random swap, and the swap position is randomly selected; the mutation operation is that each bit in the binary sequence is converted with a preset probability P

_{2}, that is the bit that is 0 becomes 1 after the conversion and the bit that is 1 becomes 0 after conversion.

## 3. Spindle Dynamic Balance Mass Compensation Optimization Simulation Experiment

#### 3.1. Experiment Platform

#### 3.2. Simulation Experiment

## 4. Optimization Comparison Verification

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Fan, H.W.; Jing, M.Q.; Liu, H. Review for studying on active hybrid auto-balancer of grinding wheel and motor spindle. Vib. Shock
**2012**, 31, 26–30. [Google Scholar] - Wang, Z.; Tu, W.; Zhu, F.L. High Speed Machine Spindle On-line Dynamic Balancing Experimental Study Based on Influence Coefficie. Mach. Tool Hydraul.
**2018**, 46, 28–32. [Google Scholar] - Li, H.W.; Xu, Y.; Gu, H.D.; Zhao, L.; Yu, S.Y. Field Dynamic Balancing Method in AMB—FIexible Rotor System. China Mech. Eng.
**2008**, 19, 1419–1422. [Google Scholar] - Gu, C.H.; Zeng, S.; Luo, D.W.; Zhang, J.Q. Design and tests for a mechanical type of online balancing actuator. Vib. Shock
**2014**, 33, 151–155. [Google Scholar] - Chen, L.F.; Wu, H.Q.; Wang, W.M. A study of an error-free movement control algorithm for a bi-disc balancer. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.)
**2012**, 39, 89–94. [Google Scholar] - Cao, Q.; Chen, L.F.; Gao, J.J. Study of bi-disc electromagnetic balancer movement control for rotor auto-balancing. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.)
**2010**, 3, 121–125. [Google Scholar] - Li, X.F.; Zheng, L.X.; Liu, Z.X. Theoretical and Experimental Research on Balancing of Flexible Rotors without Trial Weights. Vib. Test Diagn.
**2013**, 33, 65–570. [Google Scholar] - Jiang, H.; Shi, Y.F.; Ran, X.F. A new rotor balancing method based on PTFA theory. Acta Technica CSAV
**2017**, 62, 97–107. [Google Scholar] - Larios, J.G.M.; Ocampo, J.C.; Ortega, A.B.; Pliego, A.A.; Wing, E.S.G. Balanceo Automático de un Sistema Rotor-Cojinete: Identificador Algebraico en Línea del Desbalance Para un Sistema Rotodinámico. Rev. Iberoam. Automática Inf. Ind.
**2016**, 13, 281–292. [Google Scholar] [CrossRef][Green Version] - Kuen-Tai, T. Application of the Genetic Algorithm Method in Flexible Rotor Dynamic Balancing. Mon. J. Taipower’s Eng.
**2015**, 802, 18–30. [Google Scholar] - Xu, X.B.; Chen, S. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout. Sensors
**2015**, 15, 21876–21897. [Google Scholar] [CrossRef] [PubMed][Green Version] - Xu, J.; Zhao, Y.; Jia, Z.Y.; Zhang, J.J. Rotor dynamic balancing control method based on fuzzy auto-tuning single neuron PID. IEICE Electron. Express
**2017**, 14. [Google Scholar] [CrossRef][Green Version] - Xu, B.; Zhang, L.N.; Zheng, P.; Xue, J.W. The New Control Strategy of Grinding Wheel Dynamic Balance Measurement and Control System. Mach. Des. Manuf.
**2018**, 1, 137–139. [Google Scholar] - Fan, H.W.; Wu, T.Q.; Liu, H.; Jing, M.Q. Steady-state temperature field FEA of machine tool motorized spindle considering electromagnetic. Manuf. Technol. Mach. Tool
**2017**, 11, 88–91. [Google Scholar] - Ma, H.T.; Ma, S.F.; Liu, X.Y.; Yu, Y. A dynamic balance optimal fuzzy controller for weight grinding wheel. J. Changchun Univ.
**2015**, 36, 163–166. [Google Scholar] - Zhang, S.H.; Zhang, Z.M. Design of an active dynamic balancing head for rotor and its balancing error analysis. J. Adv. Mech. Des.
**2015**, 9, JAMDSM0001. [Google Scholar] - Wang, X.X.; Zeng, S. The study of an on-line automatic dynamic balancing system and its dynamic balancing method when used on a flexible rotor. Reneng Dongli Gongcheng/J. Eng. Therm. Energy Power
**2003**, 18, 53–57. [Google Scholar] - Wang, Z.W.; He, L.D.; Su, Y.R. Application of hydraulic automatic balancing technology on a fan rotor. Proc. CSEE
**2009**, 29, 86–90. [Google Scholar]

Speed /r/min | Phase of 8.5 g.mm Mass/° | Phase of 11 g.mm Mass/° | 16.5 g.mm Mass Phase/° | |||
---|---|---|---|---|---|---|

A | B | A | B | A | B | |

1000 | 98 | 262 | 17 | 221 | 130 | 350 |

1500 | 102 | 265 | 18 | 220 | 130 | 348 |

2000 | 98 | 260 | 19 | 222 | 132 | 345 |

2500 | 99 | 262 | 19 | 221 | 133 | 347 |

3000 | 98 | 261 | 19 | 220 | 134 | 346 |

3500 | 99 | 261 | 20 | 221 | 133 | 346 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, Z.; Zhang, B.; Zhang, K.; Yue, G.
Optimization and Experiment of Mass Compensation Strategy for Built-In Mechanical On-Line Dynamic Balancing System. *Appl. Sci.* **2020**, *10*, 1464.
https://doi.org/10.3390/app10041464

**AMA Style**

Wang Z, Zhang B, Zhang K, Yue G.
Optimization and Experiment of Mass Compensation Strategy for Built-In Mechanical On-Line Dynamic Balancing System. *Applied Sciences*. 2020; 10(4):1464.
https://doi.org/10.3390/app10041464

**Chicago/Turabian Style**

Wang, Zhan, Bo Zhang, Ke Zhang, and Guodong Yue.
2020. "Optimization and Experiment of Mass Compensation Strategy for Built-In Mechanical On-Line Dynamic Balancing System" *Applied Sciences* 10, no. 4: 1464.
https://doi.org/10.3390/app10041464