Laser Intensity Noise Suppression for Preparing Audio-Frequency Squeezed Vacuum State of Light
Abstract
:1. Introduction
2. Demand for Laser Intensity Noise Suppression for Preparing Audio-Frequency Squeezed Vacuum State of Light
3. Experimental Setup of Feedback System for Laser Intensity Noise Suppression
4. Experimental Results and Discussion
4.1. Suppression of 795-nm NIR and 397.5-nm UV Laser Intensity Noise
4.2. Preparing Audio-Frequency Squeezed Vacuum State of 795-nm Light
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, L.-A.; Kimble, H.J.; Hall, J.L.; Wu, H. Generation of Squeezed States by Parametric Down Conversion. Phys. Rev. Lett. 1986, 57, 2520–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 2013, 7, 613–619. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Aiello, L.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arène, M.; Arnaud, N.; Ascenzi, S.; et al. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Phys. Rev. Lett. 2019, 123, 231108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, M.; Yu, H.; Kijbunchoo, N.; Fernandez-Galiana, A.; Dupej, P.; Barsotti, L.; Blair, C.D.; Brown, D.D.; Dwyer, S.E.; Effler, A.; et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. Lett. 2019, 123, 231107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ourjoumtsev, A.; Tualle-Brouri, R.; Laurat, J.; Grangier, P. Generating Optical Schrodinger Kittens for Quantum Information Processing. Science 2006, 312, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Akamatsu, D.; Arikawa, M.; Yokoi, Y.; Akiba, K.; Nagatsuka, S.; Tanimura, T.; Furusawa, A.; Kozuma, M. Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 2008, 100, 093601. [Google Scholar] [CrossRef] [Green Version]
- Appel, J.; Figueroa, E.; Korystov, D.; Lobino, M.; Lvovsky, A.I. Quantum Memory for Squeezed Light. Phys. Rev. Lett. 2008, 100, 093602. [Google Scholar] [CrossRef] [Green Version]
- Treps, N.; Grosse, N.; Bowen, W.P.; Fabre, C.; Bachor, H.A.; Lam, P.K. A quantum laser pointer. Science 2003, 301, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Vahlbruch, H.; Mehmet, M.; Danzmann, K.; Schanable, R. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photo-electric quantum efficiency. Phys. Rev. Lett. 2016, 117, 110801. [Google Scholar] [CrossRef]
- Yang, W.; Shi, S.; Wang, Y.; Ma, W.; Zheng, Y.; Peng, K. Detection of stably bright squeezed light with the quantum noise reduction of 126 dB by mutually compensating the phase fluctuations. Opt. Lett. 2017, 42, 4553–4556. [Google Scholar] [CrossRef]
- Han, Y.; Wen, X.; He, J.; Yang, B.; Wang, Y. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm. Opt. Express 2016, 24, 2350–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hétet, G.; Glöckl, O.; Pilypas, K.; Harb, C.C.; Buchler, B.C.; Bachor, H.; Lam, P.K. Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line. J. Phys. B At. Mol. Opt. Phys. 2006, 40, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Tanimura, T.; Akamatsu, D.; Yokoi, Y.; Furusawa, A.; Kozuma, M. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4. Opt. Lett. 2006, 31, 2344–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Jin, X.; Yu, X.; Zheng, Y.; Peng, K. Dependence of measured audio-band squeezing level on local oscillator intensity noise. Opt. Express 2017, 25, 24262–24271. [Google Scholar] [CrossRef] [PubMed]
- Budker, D.; Romalis, M. Optical magnetometry. Nat. Phys. 2007, 3, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Wolfgramm, F.; Cerè, A.; Beduini, F.; Predojevic, A.; Koschorreck, M.; Mitchell, M. Squeezed-Light Optical Magnetometry. Phys. Rev. Lett. 2010, 105, 053601. [Google Scholar] [CrossRef] [Green Version]
- Horrom, T.; Singh, R.; Dowling, J.P.; Mikhailov, E. Quantum-enhanced magnetometer with low-frequency squeezing. Phys. Rev. A 2012, 86, 023803. [Google Scholar] [CrossRef] [Green Version]
- Otterstrom, N.; Pooser, R.C.; Lawrie, B.J. Nonlinear optical magnetometry with accessible In Situ optical squeezing. Opt. Lett. 2015, 39, 6533–6536. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Bilek, J.; Hoff, U.B.; Madsen, L.S.; Forstner, S.; Prakash, V.; Schäfermeier, C.; Gehring, T.; Bowen, W.P.; Andersen, U.L. Quantum enhanced optomechanical magnetometry. Optica 2018, 5, 070850. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.A.; Janousek, J.; Daria, V. Biological measurement beyond the quantum limit. Nat. Photonics 2013, 7, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Farinas, A.D.; Gustafson, E.K.; Byer, R.L. Frequency and intensity noise in an injection-locked solid-state laser. J. Opt. Soc. Am. B 1995, 12, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ma, H.L.; Xie, C.D.; Peng, K.C. Suppression of intensity noise of a laser-diode-pumped single-frequency Nd:YVO4 laser by opto-electronic control. Appl. Opt. 2013, 42, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Willke, B.; Uehara, N.; Gustafson, E.K.; Byer, R.L.; King, P.J.; Seel, S.U.; Savage, R.L. Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry--Perot ring-cavity premode cleaner. Opt. Lett. 1998, 23, 1704–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, L.H.; Fang, J.C.; Li, R.J.; Jiang, L.W.; Ding, M.; Wang, W. Light intensity stabilization based on the second harmonic of the photo-elastic modulator detection in the atomic magnetometer. Opt. Express 2015, 23, 32481–32489. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, C.; Li, L.F.; Chen, L.S. Long-term and wide-band laser intensity stabilization with an electro-optic amplitude modulator. Opt. Laser Technol. 2013, 45, 775–781. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Wilken, D.; Mehmet, M.; Willke, B. Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light. Phys. Rev. Lett. 2018, 121, 173601. [Google Scholar] [CrossRef]
- Dong, I.K.; Hyug, G.R.; Jae, B.S.; Yun, W.L. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator. Rev. Sci. Instrum. 2007, 78, 103110. [Google Scholar]
- Yun, P.; Calosso, C.E.; Micalizio, S.; Boudot, R.; Tricot, F.; De Clercq, E.; François, B.; Guérandel, S. High-Performance Coherent Population Trapping Clock with Polarization Modulation. Phys. Rev. Appl. 2017, 7, 014018. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.F.; Li, C.X.; Gao, M.; Shao, X.P.; Shi, X.S.; Liu, Y.L.; Liu, C.M.; Zhao, K.; Chen, H.D. Design of laser power stabilization system based on acousto-optic modulation for the transmissivity and reflectivity measurement of optical devices. Chinese Opt. 2016, 9, 263–269. (In Chinese) [Google Scholar] [CrossRef]
- Wen, X.; Han, Y.S.; Liu, J.Y.; He, J.; Wang, J.M. Generation of polarization squeezing down to audio frequency band for Rubidium D1 line. Opt. Express 2017, 25, 20737–20748. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Han, Y.S.; Liu, J.Y.; Bai, L.L.; He, J.; Wang, J.M. Generation of squeezed states at low analysis frequencies. Acta Phys. Sin. 2018, 67, 024207. (In Chinese) [Google Scholar]
- Mckenzie, K.; Grosse, N.; Bowen, W.P.; Whitcomb, S.E.; Gray, M.B.; McClelland, D.E.; Lam, P.K. Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett. 2004, 93, 161105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.L.; Wen, X.; Yang, Y.L.; Liu, J.Y.; He, J.; Wang, J.M. 397.5 nm ultravolet laser power stabilization based on feedback control via acousto-optical frequency shifter. Chinese. J. Lasers 2018, 45, 1001008. (In Chinese) [Google Scholar]
Power of the sampling beam (mW) | ~0.5 | ~0.8 | ~1.0 | ~1.6 | ~2.0 |
Residual peak to-peak fluctuation of 795-nm NIR laser intensity with feedback control | ±0.32% | ±0.24% | ±0.17% | ±0.11% | ±0.06% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Wen, X.; Yang, Y.; He, J.; Wang, J. Laser Intensity Noise Suppression for Preparing Audio-Frequency Squeezed Vacuum State of Light. Appl. Sci. 2020, 10, 1415. https://doi.org/10.3390/app10041415
Bai L, Wen X, Yang Y, He J, Wang J. Laser Intensity Noise Suppression for Preparing Audio-Frequency Squeezed Vacuum State of Light. Applied Sciences. 2020; 10(4):1415. https://doi.org/10.3390/app10041415
Chicago/Turabian StyleBai, Lele, Xin Wen, Yulin Yang, Jun He, and Junmin Wang. 2020. "Laser Intensity Noise Suppression for Preparing Audio-Frequency Squeezed Vacuum State of Light" Applied Sciences 10, no. 4: 1415. https://doi.org/10.3390/app10041415
APA StyleBai, L., Wen, X., Yang, Y., He, J., & Wang, J. (2020). Laser Intensity Noise Suppression for Preparing Audio-Frequency Squeezed Vacuum State of Light. Applied Sciences, 10(4), 1415. https://doi.org/10.3390/app10041415