Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium
Abstract
:1. Introduction
2. Methods
2.1. Measurement Set-Up
2.2. Performance Test
2.3. Wireless Reception of Image Data
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Löw, R.; Pfau, T.; Shaffer, J.P. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 2012, 8, 819–824. [Google Scholar] [CrossRef]
- Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Dienstfrey, A.; Anderson, D.A.; Raithel, G. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor. J. Appl. Phys. 2017, 121, 233106. [Google Scholar] [CrossRef] [Green Version]
- Saffman, M.; Walker, T.G.; Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 2010, 82, 2313. [Google Scholar] [CrossRef]
- Miller, S.A.; Anderson, D.A.; Raithel, G. Radio-frequency-modulated Rydberg states in a vapor cell. New J. Phys. 2016, 18, 053017. [Google Scholar] [CrossRef] [Green Version]
- Wade, C.G.; Šibalić, N.; de Melo, N.R.; Kondo, J.M.; Adams, C.S.; Weatherill, K.J. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics 2017, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Weatherill, K.; Pritchard, J.; Abel, R.; Bason, M.; Mohapatra, A.; Adams, C. Electromagnetically induced transparency of an interacting cold Rydberg ensemble. J. Phys. At. Mol. Opt. Phys. 2008, 41, 201002. [Google Scholar] [CrossRef] [Green Version]
- Bason, M.; Mohapatra, A.; Weatherill, K.; Adams, C. Electro-optic control of atom-light interactions using Rydberg dark-state polaritons. Phys. Rev. A 2008, 77, 032305. [Google Scholar] [CrossRef] [Green Version]
- Abi-Salloum, T.Y. Electromagnetically induced transparency and Autler–Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems. Phys. Rev. A 2010, 81, 053836. [Google Scholar] [CrossRef]
- Fan, H.; Kumar, S.; Sedlacek, J.; Kübler, H.; Karimkashi, S.; Shaffer, J.P. Atom based RF electric field sensing. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 202001. [Google Scholar] [CrossRef]
- Gordon, J.A.; Holloway, C.L.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.; Thaicharoen, N.; Raithel, G. Millimeter wave detection via Autler–Townes splitting in rubidium Rydberg atoms. Appl. Phys. Lett. 2014, 105, 024104. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Feng, Z.; Liu, X.; Li, D.; Zhang, H.; Liu, J.; Zhang, L. Quantum-based determination of antenna finite range gain by using Rydberg atoms. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1589–1592. [Google Scholar] [CrossRef]
- Deb, A.; Kjærgaard, N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms. Appl. Phys. Lett. 2018, 112, 211106. [Google Scholar] [CrossRef]
- Meyer, D.H.; Cox, K.C.; Fatemi, F.K.; Kunz, P.D. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl. Phys. Lett. 2018, 112, 211108. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.A.; Sapiro, R.E.; Raithel, G. An atomic receiver for AM and FM radio communication. arXiv 2018, arXiv:1808.08589. [Google Scholar]
- Song, Z.; Zhang, W.; Liu, X.; Zou, H.; Zhang, J.; Jiang, Z.; Qu, J. Quantum-Based Amplitude Modulation Radio Receiver Using Rydberg Atoms. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Song, Z.; Liu, H.; Liu, X.; Zhang, W.; Zou, H.; Zhang, J.; Qu, J. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Opt. Express 2019, 27, 8848–8857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Novotny, D. Detecting and Receiving Phase Modulated Signals with a Rydberg Atom-Based Mixer. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1853–1857. [Google Scholar] [CrossRef] [Green Version]
- Boller, K.J.; Imamoğlu, A.; Harris, S.E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 1991, 66, 2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, P.R.; Malinovsky, V.S. Principles of Laser Spectroscopy and Quantum Optics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, H.; Song, Z.; Mu, H.; Feng, Z.; Qu, J.; Wang, Q. Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium. Appl. Sci. 2020, 10, 1346. https://doi.org/10.3390/app10041346
Zou H, Song Z, Mu H, Feng Z, Qu J, Wang Q. Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium. Applied Sciences. 2020; 10(4):1346. https://doi.org/10.3390/app10041346
Chicago/Turabian StyleZou, Haiyang, Zhenfei Song, Huihui Mu, Zhigang Feng, Jifeng Qu, and Qilong Wang. 2020. "Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium" Applied Sciences 10, no. 4: 1346. https://doi.org/10.3390/app10041346
APA StyleZou, H., Song, Z., Mu, H., Feng, Z., Qu, J., & Wang, Q. (2020). Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium. Applied Sciences, 10(4), 1346. https://doi.org/10.3390/app10041346