# Preparation of Palm Oil Ash Nanoparticles: Taguchi Optimization Method by Particle Size Distribution and Morphological Studies

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## Featured Application

**Mechanical grinding of microparticle to nanosize.**

## Abstract

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Design of Experiment

#### 2.2. Materials Characterization

#### 2.2.1. Particle Size Measurement

#### 2.2.2. Morphology Studies

## 3. Results and Discussion

#### 3.1. Parameters Optimization

#### 3.2. The Influence of the Studied Parameters on the Responses

#### 3.3. Analysis of Variance (ANOVA) Approach

#### 3.4. Characteristic of Palm Oil Ash Morphology and Particle Size Distribution

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Hameed, B.H.; Ahmad, A.A.; Aziz, N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J.
**2007**, 133, 195–203. [Google Scholar] [CrossRef] - Ismail, M.; Ismail, M.E.; Muhammad, B. Influence of elevated temperatures on physical and compressive strength properties of concrete containing palm oil fuel ash. Constr. Build. Mater.
**2011**, 25, 2358–2364. [Google Scholar] [CrossRef] - Boey, P.-L.; Ganesan, S.; Lim, S.-X.; Lim, S.-L.; Maniam, G.P.; Khairuddean, M. Utilization of BA (boiler ash) as catalyst for transesterification of palm olein. Energy
**2011**, 36, 5791–5796. [Google Scholar] [CrossRef][Green Version] - Khankhaje, E.; Hussin, M.W.; Mirza, J.; Rafieizonooz, M.; Salim, M.R.; Siong, H.C.; Warid, M.N.M. On blended cement and geopolymer concretes containing palm oil fuel ash. Mater. Des.
**2016**, 89, 385–398. [Google Scholar] [CrossRef] - Ul Islam, M.M.; Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. Durability properties of sustainable concrete containing high volume palm oil waste materials. J. Clean. Prod.
**2016**, 137, 167–177. [Google Scholar] [CrossRef] - Khankhaje, E.; Rafieizonooz, M.; Salim, M.R.; Khan, R.; Mirza, J.; Siong, H.C. Sustainable clean pervious concrete pavement production incorporating palm oil fuel ash as cement replacement. J. Clean. Prod.
**2018**, 172, 1476–1485. [Google Scholar] [CrossRef] - Chu, K.H.; Hashim, M.A. Adsorption and desorption characteristics of zinc on ash particles derived from oil palm waste. J. Chem. Technol. Biotechnol.
**2002**, 77, 685–693. [Google Scholar] [CrossRef] - Zainudin, N.F.; Lee, K.T.; Kamaruddin, A.H.; Bhatia, S.; Mohamed, A.R. Study of adsorbent prepared from oil palm ash (OPA) for flue gas desulfurization. Sep. Purif. Technol.
**2005**, 45, 50–60. [Google Scholar] [CrossRef] - Abdul Khalil, H.P.S.; Fizree, H.M.; Bhat, A.H.; Jawaid, M.; Abdullah, C.K. Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Compos. Part B Eng.
**2013**, 53, 324–333. [Google Scholar] [CrossRef] - Abdul Khalil, H.P.S.; Fizree, H.M.; Jawaid, M.; Alattas, O.S. Preparation and characterization of nano structured materials from oil palm ash: A bio-agricultural waste from oil palm mill. BioResources
**2011**, 6, 4537–4546. [Google Scholar] - Abdul Khalil, H.P.S.; Rus Mahayuni, A.R.; Rudi, D.; Almulali, M.Z.; Abdullah, C.K. Characterization of various organic waste nanofillers obtained from oil palm ash. BioResources
**2012**, 7, 5771–5780. [Google Scholar] - Muñoz, J.E.; Cervantes, J.; Esparza, R.; Rosas, G. Iron nanoparticles produced by high-energy ball milling. J. Nanopart. Res.
**2007**, 9, 945–950. [Google Scholar] [CrossRef] - Russo, L.; Colangelo, F.; Cioffi, R.; Rea, I.; Stefano, L.D. A Mechanochemical Approach to Porous Silicon Nanoparticles Fabrication. Materials
**2011**, 4, 1023–1033. [Google Scholar] [CrossRef] [PubMed] - Salah, N.; Habib, S.S.; Khan, Z.H.; Memic, A.; Azam, A.; Alarfaj, E.; Zahed, N.; Al-Hamedi, S. High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed.
**2011**, 6, 863–869. [Google Scholar] [CrossRef] [PubMed][Green Version] - Watanabe, H. Critical rotation speed for ball-milling. Powder Technol.
**1999**, 104, 95–99. [Google Scholar] [CrossRef] - Enqvist, E.; Ramanenka, D.; Marques, P.A.; Gracio, J.; Emami, N. The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene reinforced with multiwalled carbon nanotubes. Polym. Compos.
**2016**, 37, 1128–1136. [Google Scholar] [CrossRef] - Kutuk, S. Influence of milling parameters on particle size of ulexite material. Powder Technol.
**2016**, 301, 421–428. [Google Scholar] [CrossRef] - Patil, A.G.; Anandhan, S. Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash. Powder Technol.
**2015**, 281, 151–158. [Google Scholar] [CrossRef] - Gaitonde, V.; Karnik, S.; Davim, J.P. Taguchi multiple-performance characteristics optimization in drilling of medium density fibreboard (MDF) to minimize delamination using utility concept. J. Mater. Process. Technol.
**2008**, 196, 73–78. [Google Scholar] [CrossRef] - Yang, W.p.; Tarng, Y. Design optimization of cutting parameters for turning operations based on the Taguchi method. J. Mater. Process. Technol.
**1998**, 84, 122–129. [Google Scholar] [CrossRef] - Li, C.; Fan, Z.; Wu, S.; Li, Y.; Gan, Y.; Zhang, A. Effect of carbon black nanoparticles from the pyrolysis of discarded tires on the performance of asphalt and its mixtures. Appl. Sci.
**2018**, 8, 624. [Google Scholar] [CrossRef][Green Version] - Hubenthal, F.; Blázquez Sánchez, D.; Träger, F. Determination of morphological parameters of supported gold nanoparticles: Comparison of AFM combined with optical spectroscopy and theoretical modeling versus TEM. Appl. Sci.
**2012**, 2, 566–583. [Google Scholar] [CrossRef] - Akcay, K.; Sirkecioğlu, A.; Tatlıer, M.; Savaşçı, Ö.T.; Erdem-Şenatalar, A. Wet ball milling of zeolite HY. Powder Technol.
**2004**, 142, 121–128. [Google Scholar] [CrossRef] - John, O.; Pamtoks, H.; Omolayo, M.P.; Adelana, R.A. Taguchi Optimization of Process Parameters on the Hardness and Impact Energy of Aluminium Alloy Sand Castings. Leonardo J. Sci.
**2013**, 12, 1–12. [Google Scholar] - Külekcı, M.K. Analysis of process parameters for a surface-grinding process based on the Taguchi method. Mater. Tehnol.
**2013**, 47, 105–109. [Google Scholar] - Goya, G.F. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Commun.
**2004**, 130, 783–787. [Google Scholar] [CrossRef] - Kumar, S.; Kumar, R. Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceram. Int.
**2011**, 37, 533–541. [Google Scholar] [CrossRef] - Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci.
**2001**, 46, 1–184. [Google Scholar] [CrossRef] - Bilgili, E.; Hamey, R.; Scarlett, B. Production of pigment nanoparticles using a wet stirred mill with polymeric media. China Particuol.
**2004**, 2, 93–100. [Google Scholar] [CrossRef] - Nkwanyana, S.; Loveday, B. Addition of pebbles to a ball-mill to improve grinding efficiency—Part 2. Miner. Eng.
**2018**, 128, 115–122. [Google Scholar] [CrossRef] - Fuerstenau, D.W.; Lutch, J.J.; De, A. The effect of ball size on the energy efficiency of hybrid high-pressure roll mill/ball mill grinding. Powder Technol.
**1999**, 105, 199–204. [Google Scholar] [CrossRef] - Cho, H.; Kwon, J.; Kim, K.; Mun, M. Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills. Powder Technol.
**2013**, 246, 625–634. [Google Scholar] [CrossRef][Green Version] - Kharisma, A.; Murphiyanto, R.D.J.; Perdana, M.K.; Kasih, T.P. Application of Taguchi method and ANOVA in the optimization of dyeing process on cotton knit fabric to reduce re-dyeing process. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; p. 012023. [Google Scholar]
- Kowalczyk, M. Application of Taguchi and Anova methods in selection of process parameters for surface roughness in precision turning of titanium. Adv. Manuf. Sci. Technol.
**2014**, 38, 2. [Google Scholar] [CrossRef] - Sharma, V.; Chattopadhyaya, S.; Hloch, S. Multi response optimization of process parameters based on Taguchi—Fuzzy model for coal cutting by water jet technology. Int. J. Adv. Manuf. Technol.
**2011**, 56, 1019–1025. [Google Scholar] [CrossRef] - Akbari, B.; Tavandashti, M.P.; Zandrahimi, M. Particle size characterization of nanoparticles–A practicalapproach. Iran. J. Mater. Sci. Eng.
**2011**, 8, 48–56. [Google Scholar] - Aqeel Ashraf, M.; Peng, W.; Zare, Y.; Rhee, K.Y. Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites. Nanoscale Res. Lett.
**2018**, 13, 214. [Google Scholar] [CrossRef] [PubMed] - Pishvaei, M.; Farshchi, T.F. Synthesis of high solid content polyacrylate/nanosilica latexes via miniemulsion polymerization. Iran. Polym. J.
**2010**, 19, 707–716. [Google Scholar] - Yazdimamaghani, M.; Pourvala, T.; Motamedi, E.; Fathi, B.; Vashaee, D.; Tayebi, L. Synthesis and characterization of encapsulated nanosilica particles with an acrylic copolymer by in situ emulsion polymerization using thermoresponsive nonionic surfactant. Materials
**2013**, 6, 3727–3741. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**Diagram depicting the preparation of palm oil ash (POA) nanoparticle by design optimization.

**Figure 3.**TEM image (E1–E3) and POA nanoparticle distribution (

**A**–

**C**) from experiment one, two, and three of the Taguchi optimization processes.

**Figure 4.**TEM image (E4–E6) and POA nanoparticle distribution (

**D**–

**F**) from the experiment four, five, and six of the Taguchi optimization processes.

**Figure 5.**TEM image (E7–E9) and POA nanoparticle distribution (

**H**–

**I**) from experiments seven, eight, and nine of the Taguchi optimization processes.

**Figure 7.**TEM micrograph (200 nm) and particle size distribution graph of palm oil ash nanoparticles.

Parameter | Level 1 | Level 2 | Level 3 |
---|---|---|---|

Milling Time | 6 h | 12 h | 24 h |

Milling speed | 100 rpm | 130 rpm | 170 rpm |

Size of stainless-steel ball | 10 mm | 16 mm | 20 mm |

Experiment | Milling Time (hour) | Milling Speed (rpm) | Size of Balls (mm) | Mean Particle Size (µm) |
---|---|---|---|---|

1 | 6 h | 100 rpm | 10 mm | 0.48 ± 0.06 |

2 | 6 h | 130 rpm | 16 mm | 0.41 ± 0.07 |

3 | 6 h | 170 rpm | 20 mm | 0.23 ± 0.06 |

4 | 12 h | 100 rpm | 16 mm | 0.28 ± 0.09 |

5 | 12 h | 130 rpm | 20 mm | 0.19 ± 0.04 |

6 | 12 h | 170 rpm | 10 mm | 0.15 ± 0.08 |

7 | 24 h | 100 rpm | 20 mm | 0.11 ± 0.07 |

8 | 24 h | 130 rpm | 10 mm | 0.13 ± 0.04 |

9 | 24 h | 170 rpm | 16 mm | 0.09 ± 0.07 |

Experiment | Milling Time | Milling Speed | Size of Balls | SN Ratio |
---|---|---|---|---|

1 | 1 | 1 | 1 | 0.92 |

2 | 1 | 2 | 2 | −0.31 |

3 | 1 | 3 | 3 | 0.43 |

4 | 2 | 1 | 2 | 0.32 |

5 | 2 | 2 | 3 | 1.51 |

6 | 2 | 3 | 1 | 1.20 |

7 | 3 | 1 | 3 | 3.94 |

8 | 3 | 2 | 1 | 3.39 |

9 | 3 | 3 | 2 | −0.28 |

Level | Milling Time | Milling Speed | Size of Balls |
---|---|---|---|

1 | 0.34422 | 1.72604 * | 1.83909 |

2 | 1.01416 | 1.53138 | −0.09304 |

3 | 2.3507 * | 0.45170 | 1.96308 * |

Delta ∆ | 2.00652 | 1.27434 | 2.05612 |

Rank | 2 | 3 | 1 |

Parameter | DoF | Sum of Square | Means Square | F-Test | Contribution (%) |
---|---|---|---|---|---|

Milling Time | 2 | 6.2614 | 3.1307 | 4.80 | 34.08 |

Milling Speed | 2 | 2.8275 | 1.4138 | 2.17 | 15.39 |

Size of Balls | 2 | 7.9762 | 3.9881 | 6.11 | 43.42 |

Error | 2 | 1.3053 | 0.6527 | 7.11 | |

Total | 8 | 18.3704 | 100 |

Parameter | Level | Description |
---|---|---|

Milling Time | 3 | 24 h |

Milling Speed | 1 | 100 rpm |

Size of balls | 3 | 20 mm |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rizal, S.; Abdullah, C.K.; Olaiya, N.G.; Sri Aprilia, N.A.; Zein, I.; Surya, I.; Abdul Khalil, H.P.S. Preparation of Palm Oil Ash Nanoparticles: Taguchi Optimization Method by Particle Size Distribution and Morphological Studies. *Appl. Sci.* **2020**, *10*, 985.
https://doi.org/10.3390/app10030985

**AMA Style**

Rizal S, Abdullah CK, Olaiya NG, Sri Aprilia NA, Zein I, Surya I, Abdul Khalil HPS. Preparation of Palm Oil Ash Nanoparticles: Taguchi Optimization Method by Particle Size Distribution and Morphological Studies. *Applied Sciences*. 2020; 10(3):985.
https://doi.org/10.3390/app10030985

**Chicago/Turabian Style**

Rizal, Samsul, C. K. Abdullah, N. G. Olaiya, N. A. Sri Aprilia, Ikramullah Zein, Indra Surya, and H. P. S. Abdul Khalil. 2020. "Preparation of Palm Oil Ash Nanoparticles: Taguchi Optimization Method by Particle Size Distribution and Morphological Studies" *Applied Sciences* 10, no. 3: 985.
https://doi.org/10.3390/app10030985