Fine Root Length of Maize Decreases in Response to Elevated CO2 Levels in Soil
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods and Materials
2.1. Location and Experimental Timeline
2.2. Pot Experiment of Elevated Soil CO2 Treatments
2.3. CO2 Injection Treatments
2.4. Root Sampling Preparation and Separation
2.5. Root Morphology Scanning and Parameter Analysis
2.6. Data Analysis
3. Results
3.1. Root Characteristics in Response to Elevated Soil CO2 Treatments
3.2. Development of the Root Diameter Under Different Levels of Elevated Soil CO2
3.3. Relative Diameter Class Length Under Different Levels of Elevated Soil CO2
4. Discussion
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Peletiri, S.P.; Rahmanian, N.; Mujtaba, I.M. CO2 Pipeline design: A review. Energies 2018, 11, 2184. [Google Scholar] [CrossRef] [Green Version]
- The Global Status of CCS. 2017. Understanding Carbon Capture and Storage. Available online: https://www.globalccsinstitute.com/ (accessed on 25 April 2018).
- Lions, J.; Devau, N.; de Lary, L.; Dupraz, S.; Parmentier, M.; Gombert, P.; Dictor, M.C. Potential impacts of leakage from CO2 geological storage on geochemical processes controlling fresh groundwater quality: A review. Int. J. Greenh. Gas Control 2014, 22, 165–175. [Google Scholar] [CrossRef]
- Jones, D.G.; Beaubien, S.E.; Blackford, J.C.; Foekema, E.M.; Lions, J.; De Vittor, C.; West, J.M.; Widdicombe, S.; Hauton, C.; Queirós, A.M. Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. Int. J. Greenh. Gas Control 2015, 40, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Ko, D.; Yoo, G.; Yun, S.T.; Chung, H. Impacts of CO2 leakage on plants and microorganisms: A review of results from CO2 release experiments and storage sites. Greenh. Gases Sci. Technol. 2016, 6, 319–338. [Google Scholar] [CrossRef]
- Roberts, J.J.; Stalker, L. What have We Learned about CO2 Leakage from Field Injection Tests? Energy Procedia. 2017, 114, 5711–5731. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Chen, Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Sci. Total Environ. 2019, 655, 865–879. [Google Scholar] [CrossRef]
- Zhou, X.; Apple, M.E.; Dobeck, L.M.; Cunningham, A.B.; Spangler, L.H. Observed response of soil O2 concentration to leaked CO2 from an engineered CO2 leakage experiment. Int. J. Greenh. Gas Control 2013, 16, 116–128. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, X.; Zhao, Z.; Wu, Y.; Li, Y. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2. Environ. Manag. 2016, 171, 225–230. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, S.H.; Kim, S.; Yun, S.T.; Jun, S.C.; Oh, Y.Y.; Son, Y.H. Characterizing the spatial distribution of CO2 leakage from the shallow CO2 release experiment in South Korea. Int. J. Greenh. Gas Control 2018, 72, 152–162. [Google Scholar] [CrossRef]
- Lake, J.A.; Lomax, B.H. Plant responses to simulated carbon capture and transport leakage: The effect of impurities in the CO2 gas stream. Int. J. Greenh. Gas Control 2018, 72, 208–213. [Google Scholar] [CrossRef]
- Jiang, J.; Steven, M.D.; He, R.; Chen, Y.; Du, P.; Guo, H. Identifying the spectral responses of several plant species under CO2 leakage and waterlogging stresses. J. Greenh. Gas Control 2015, 37, 1–11. [Google Scholar] [CrossRef]
- Smith, K.L.; Lake, J.A.; Steven, M.D.; Lomax, B.H. Effects of elevated soil CO2 concentration on growth and competition in a grass-clover mix. J. Greenh. Gas Control 2017, 64, 340–348. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Moonis, M.; Chung, H.; Yoo, G. Effects of high soil CO2 concentrations on seed germination and soil microbial activities. J. Greenh. Gas Control 2016, 53, 117–126. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.; Li, Y.; Wan, Y. The impacts of introduced CO2 flux on maize/alfalfa and soil. Int. J. Greenh. Gas Control 2014, 23, 86–97. [Google Scholar] [CrossRef]
- Sharma, B.; Apple, M.E.; Zhou, X.; Olson, J.M.; Dorshorst, C.; Dobeck, L.M.; Cunningham, A.B.; Spangler, L.H. Physiological responses of dandelion and orchard grass leaves to experimentally released upwelling soil CO2. Int. J. Greenh. Gas Control 2014, 24, 139–148. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.; Li, Y.; Wan, Y.; Zhang, J.; Zhong, P. Impact assessment and tolerable threshold value of CO2 leakage from geological storage on agro-ecosystem. Trans. Chin. Soc. Agric. Eng. 2012, 28, 196–205. [Google Scholar]
- Ma, X.; Zhang, X.; Tian, D.; He, X.; Han, Y.; Ji, X. Assessment on Zea diploperennis L. as bio-indicator of CO2 leakage from geological storage. Trans. CSAE 2017, 33, 224–229. [Google Scholar]
- Maček, I.; Pfanz, H.; Francetič, V.; Batič, F.; Vodnik, D. Root respiration response to high CO2 concentrations in plants from natural CO2 springs. Environ. Exp. Bot. 2005, 54, 90–99. [Google Scholar] [CrossRef]
- Al-Traboulsi, M.; Sjögersten, S.; Colls, J.; Steven, M.; Black, C. Potential impact of CO2 leakage from Carbon Capture and Storage (CCS) systems on growth and yield in maize. Plant Soil 2012, 365, 267–281. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, X.; Wu, Y.; Gao, Q.; Li, Y. A plant tolerance index to select soil leaking CO2 bio-indicators for carbon capture and storage. J. Clean. Prod. 2018, 170, 735–741. [Google Scholar] [CrossRef]
- Smith, K.L.; Steven, M.D.; Jones, D.G.; West, J.M.; Coombs, P.; Green, K.A.; Barlow, T.S.; Breward, N.; Gwosdz, S.; Krüger, M.; et al. Environmental impacts of CO2 leakage: Recent results from the ASGARD facility, UK. Energy Procedia 2013, 37, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Zhang, Y.; Sun, Z.; Zheng, J.; Bai, W.; Zhang, Y.; Liu, Y.; Feng, L.; Chen, F.; Zhang, Z.; et al. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences 2017, 14, 3851–3858. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Zhou, X.; Nie, Y.; Bai, S.H.; Zhou, L.; Shao, J.; Cheng, W.; Wang, J.; Hu, F.; Fu, Y. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environ. 2018, 41, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Chimento, C.; Amaducci, S. Characterization of fine root system and potential contribution to soil organic carbon of six perennial bioenergy crops. Biomass Bioenergy 2015, 83, 116–122. [Google Scholar] [CrossRef]
- York, L.M.; Lynch, J.P. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. J. Exp. Bot. 2015, 66, 5493–5505. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; He, W.; Ko, D.; Chung, H.; Yoo, G. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site. Sci. Total Environ. 2017, 607, 1278–1285. [Google Scholar] [CrossRef]
- Bouma, T.J.; Nielsen, K.L.; Koutstaal, B. Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 2000, 218, 185–196. [Google Scholar] [CrossRef]
- Zobel, R.W.; Kinraide, T.B.; Baligar, V.C. Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil 2007, 297, 243–254. [Google Scholar] [CrossRef]
- Jani, A.D.; Grossman, J.M.; Smyth, T.J.; Hu, S. Influence of soil inorganic nitrogen and root diameter size on legume cover crop root decomposition and nitrogen release. Plant Soil 2015, 393, 57–68. [Google Scholar] [CrossRef]
- Świątek, B.; Woś, B.; Chodak, M.; Maiti, S.K.; Józefowska, A.; Pietrzykowski, M. Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma 2019, 337, 1021–1027. [Google Scholar] [CrossRef]
- Leuschner, C.; Hertel, D.; Schmid, I.; Koch, O.; Muhs, A.; Höglscher, D. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 2004, 258, 43–56. [Google Scholar] [CrossRef]
Date | Measure | Quantity/pot |
---|---|---|
19 June 2017 | Base fertilizer | N 1.5 g/P2O5 1.5 g/K2O 1.5 g |
19 June 2017 | Irrigation | 15 L |
5 July 2017 | Irrigation | 5 L |
12 July 2017 | Irrigation | 5 L |
19 July 2017 | Irrigation | 5 L |
28 July 2017 | Irrigation | 5 L |
2 August 2017 | Irrigation | 5 L |
14 August 2017 | Irrigation | 5 L |
21 August 2017 | Irrigation | 5 L |
25 August 2017 | Irrigation | 5 L |
28 August 2017 | Irrigation | 5 L |
30 August 2017 | Irrigation | 5 L |
4 September 2017 | Irrigation | 5 L |
8 September 2017 | Irrigation | 5 L |
10 September 2017 | Irrigation | 5 L |
16 September 2017 | Irrigation | 5 L |
Root Parameters | Mean Values CK | Mean Values Treatments | t | n | p | Decrease (%) |
---|---|---|---|---|---|---|
Root length (cm) | 37,924.62 ± 3777.91 | 35,047.00 ± 7606.10 (G1000) | 0.34 | 3 | 0.75 | --- |
20,960.99 ± 2860.17 (G2000) | 3.58 | 3 | 0.02※ | 44.73% | ||
Root volume (cm3) | 65.34 ± 0.53 | 71.99 ± 12.06 (G1000) | −0.51 | 3 | 0.61 | --- |
52.82 ± 4.26 (G2000) | 2.92 | 3 | 0.43 | --- | ||
Root surface area (cm2) | 5444.83 ± 266.16 | 5420.61 ± 983.64 (G1000) | 0.24 | 3 | 0.98 | --- |
3585.8735 ± 368.70 (G2000) | 4.09 | 3 | 0.02※ | 34.14% | ||
Root diameter (mm) | 0.047 ± 0.0022 | 0.051 ± 0.0016 (G1000) | −1.6 | 3 | 0.19 | --- |
0.057 ± 0.0030 (G2000) | −2.65 | 3 | 0.06 | --- | ||
Root dry weight (g) | 19.37 ± 2.0 | 24.65 ± 3.3 (G1000) | −1.37 | 3 | 0.246 | --- |
18.73 ± 1.34 (G2000) | 0.28 | 3 | 0.80 | --- |
Treatments | Root Length (cm) | |||
---|---|---|---|---|
0 < d ≦ 1.00 | 1.0 <d ≦ 2.00 | 2.0 < d ≦ 2.90 | d > 2.90 | |
CK | 34763.6 ± 3769.6a | 2107.4 ± 74.0a | 519.4 ± 34.3ab | 532.6 ± 41.3a |
G1000 | 24529.3 ± 1325.5b | 1341 ± 85.7b | 544.8 ± 22.2a | 625.5 ± 58.5a |
G2000 | 18814.3 ± 2735.3b | 1202.8 ± 83.9b | 419.3 ± 34.8b | 533.0 ± 47.3a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Zhang, X.; Ma, X. Fine Root Length of Maize Decreases in Response to Elevated CO2 Levels in Soil. Appl. Sci. 2020, 10, 968. https://doi.org/10.3390/app10030968
Han Y, Zhang X, Ma X. Fine Root Length of Maize Decreases in Response to Elevated CO2 Levels in Soil. Applied Sciences. 2020; 10(3):968. https://doi.org/10.3390/app10030968
Chicago/Turabian StyleHan, Yaojie, Xueyan Zhang, and Xin Ma. 2020. "Fine Root Length of Maize Decreases in Response to Elevated CO2 Levels in Soil" Applied Sciences 10, no. 3: 968. https://doi.org/10.3390/app10030968
APA StyleHan, Y., Zhang, X., & Ma, X. (2020). Fine Root Length of Maize Decreases in Response to Elevated CO2 Levels in Soil. Applied Sciences, 10(3), 968. https://doi.org/10.3390/app10030968